Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Hepatol ; 73(1): 140-148, 2020 07.
Article in English | MEDLINE | ID: mdl-32302728

ABSTRACT

BACKGROUND & AIMS: Obesity and type 2 diabetes increase hepatocellular carcinoma (HCC) incidence in humans and accelerate diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. We investigated whether exercise reduces HCC development in obese/diabetic Alms1 mutant (foz/foz) mice and studied protective mechanisms. METHODS: We measured HCC development in DEN-injected male foz/foz and wild-type (WT) littermates housed with or without an exercise wheel from week 4 until 12 or 24 weeks, and in foz/foz mice pair-fed to WT littermates. We also studied HCC development in DEN-injected Jnk1-/-.foz/foz mice generated by cross breeding, as well as their genetic controls. Dysplastic hepatocytes were identified by glutathione-S-transferase pi form (GST-pi) immunohistochemistry, liver nodules were counted, and HCC was analysed by histopathology. RESULTS: Exercising foz/foz mice maintained similar weight as WT mice up to 10 weeks, but then gained weight and were obese by 24 weeks; a similar body weight profile was obtained by pair-feeding foz/foz mice to WT. At 12 weeks, livers of exercising foz/foz mice exhibited fewer GST-pi positive hepatocytes than sedentary counterparts; by 24 weeks, fewer exercising foz/foz mice developed HCC (15% vs. 64%, p <0.05). Conversely, pair-feeding foz/foz mice failed to reduce HCC incidence. In these insulin-resistant foz/foz mice, exercise failed to activate hepatic AMPK or Akt/mTORC1. Instead, it improved insulin sensitivity, ameliorated steatosis and liver injury, activated p53 to increase p27 expression, and prevented JNK activation. This was associated with suppression of hepatocellular proliferation. DEN-injected Jnk1-/-.foz/foz mice failed to develop liver tumours or HCC at 24 weeks. CONCLUSIONS: Direct effects of exercise dampen proliferation of dysplastic hepatocytes to reduce 3-month dysplastic foci and 6-month incidence of DEN-induced HCC in obese, insulin-resistant mice. The effects of exercise that potentially slow hepatocarcinogenesis include p53-mediated induction of p27 and prevention of JNK activation. LAY SUMMARY: Fatty liver disease commonly occurs alongside obesity and diabetes, contributing to rapidly increasing rates of liver cancer throughout the world. Herein, we show that exercise reduces the incidence and progression of hepatocellular carcinoma in mouse models. The effect of exercise on cancer risk was shown to be independent of changes in weight. Exercise could be a protective mechanism against liver cancer in at-risk individuals.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Liver Neoplasms , Motor Activity/physiology , Obesity , Animals , Body Weight/physiology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Immunohistochemistry , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , MAP Kinase Signaling System/physiology , Mice , Mice, Obese , Mitogen-Activated Protein Kinases/metabolism , Obesity/metabolism , Obesity/physiopathology , Physical Conditioning, Animal , Proliferating Cell Nuclear Antigen/metabolism , Protective Factors , Risk Factors , Tumor Suppressor Protein p53/metabolism
2.
Hepatol Commun ; 3(6): 776-791, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31168512

ABSTRACT

It is unclear what drives the development of fibrosing nonalcoholic steatohepatitis (NASH). We aimed to determine whether cholesterol crystallization within hepatocyte lipid droplets (LDs) distinguishes patients with fibrosing NASH from patients with isolated hepatic steatosis and to study pathways leading to cholesterol accumulation in hepatocyte LDs. Patients with fibrosing NASH (n = 16) were compared to patients with isolated steatosis (n = 14). Almost all patients with fibrosing NASH had free cholesterol staining by filipin (16/16) and cholesterol crystals (15/16) in hepatocyte LDs, mostly in association with the LD membrane, compared to only 3/14 with cholesterol crystals and 3/14 with faint filipin staining in patients with isolated steatosis (P < 0.05). We were unable to identify significant differences in the expression of genes in liver tissue related to cholesterol homeostasis or LD proteins between patients with fibrosing NASH and isolated steatosis. Human hepatoma cell line (HepG2) cells were supplemented with low-density lipoprotein (LDL)-cholesterol and oleic acid to develop large LDs, similar to those observed in patients with NASH. Fluorescent markers were used to track the uptake and intracellular trafficking of LDL-cholesterol. LDL-cholesterol was taken up by HepG2 cells and transported through the endosomal-lysosomal compartment directly to LDs, suggesting direct contact sites between late endosomes and LDs. Exposure of HepG2 cells to LDL-cholesterol resulted in a high concentration of cholesterol and cholesterol crystallization in LDs. Conclusion: Excess cholesterol is stored in the liver primarily within hepatocyte LDs where it can crystallize. Our findings are best explained by direct transport of cholesterol from late endosomes/lysosomes to LDs in hepatocytes. We found a strong association between the presence of LD cholesterol crystals and the development of fibrosing NASH in humans, suggesting a causal relationship.

3.
Nat Commun ; 9(1): 4490, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30367044

ABSTRACT

The underlining mechanisms of dietary cholesterol and nonalcoholic steatohepatitis (NASH) in contributing to hepatocellular carcinoma (HCC) remain undefined. Here we demonstrated that high-fat-non-cholesterol-fed mice developed simple steatosis, whilst high-fat-high-cholesterol-fed mice developed NASH. Moreover, dietary cholesterol induced larger and more numerous NASH-HCCs than non-cholesterol-induced steatosis-HCCs in diethylnitrosamine-treated mice. NASH-HCCs displayed significantly more aberrant gene expression-enriched signaling pathways and more non-synonymous somatic mutations than steatosis-HCCs (335 ± 84/sample vs 43 ± 13/sample). Integrated genetic and expressional alterations in NASH-HCCs affected distinct genes pertinent to five pathways: calcium, insulin, cell adhesion, axon guidance and metabolism. Some of the novel aberrant gene expression, mutations and core oncogenic pathways identified in cholesterol-associated NASH-HCCs in mice were confirmed in human NASH-HCCs, which included metabolism-related genes (ALDH18A1, CAD, CHKA, POLD4, PSPH and SQLE) and recurrently mutated genes (RYR1, MTOR, SDK1, CACNA1H and RYR2). These findings add insights into the link of cholesterol to NASH and NASH-HCC and provide potential therapeutic targets.


Subject(s)
Calcium Signaling/genetics , Carcinoma, Hepatocellular/physiopathology , Cholesterol, Dietary/adverse effects , Liver Neoplasms/physiopathology , Metabolic Networks and Pathways/genetics , Non-alcoholic Fatty Liver Disease/genetics , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Gene Expression , Gene Expression Profiling , Humans , Inflammation/genetics , Liver/metabolism , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Biological , Mutation , Non-alcoholic Fatty Liver Disease/metabolism
4.
Clin Sci (Lond) ; 131(16): 2145-2159, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28687713

ABSTRACT

Background and aims: TLR9 deletion protects against steatohepatitis due to choline-amino acid depletion and high-fat diet. We measured TLR9 in human non-alcoholic steatohepatitis (NASH) livers, and tested whether TLR9 mediates inflammatory recruitment in three murine models of non-alcoholic fatty liver disease (NAFLD). Methods: We assayed TLR mRNA in liver biopsies from bariatric surgery patients. Wild-type (Wt), appetite-dysregulated Alms1 mutant (foz/foz), Tlr9-/-, and Tlr9-/-foz/foz C57BL6/J mice and bone marrow (BM) chimeras were fed 0.2% cholesterol, high-fat, high sucrose (atherogenic[Ath]) diet or chow, and NAFLD activity score (NAS)/NASH pathology, macrophage/neutrophil infiltration, cytokines/chemokines, and cell death markers measured in livers. Results: Hepatic TLR9 and TLR4 mRNA were increased in human NASH but not simple steatosis, and in Ath-fed foz/foz mice with metabolic syndrome-related NASH. Ath-fed Tlr9-/- mice showed simple steatosis and less Th1 cytokines than Wt. Tlr9-/-foz/foz mice were obese and diabetic, but necroinflammatory changes were less severe than Tlr9+/+.foz/foz mice. TLR9-expressing myeloid cells were critical for Th1 cytokine production in BM chimeras. BM macrophages from Tlr9-/- mice showed M2 polarization, were resistant to M1 activation by necrotic hepatocytes/other pro-inflammatory triggers, and provoked less neutrophil chemotaxis than Wt Livers from Ath-fed Tlr9-/- mice appeared to exhibit more markers of necroptosis [receptor interacting protein kinase (RIP)-1, RIP-3, and mixed lineage kinase domain-like protein (MLKL)] than Wt, and ∼25% showed portal foci of mononuclear cells unrelated to NASH pathology. CONCLUSION: Our novel clinical data and studies in overnutrition models, including those with diabetes and metabolic syndrome, clarify TLR9 as a pro-inflammatory trigger in NASH. This response is mediated via M1-macrophages and neutrophil chemotaxis.


Subject(s)
Inflammation Mediators/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Toll-Like Receptor 9/biosynthesis , Up-Regulation/physiology , Adiponectin/deficiency , Adult , Animals , Bariatric Surgery , Biopsy , Cells, Cultured , Cytokines/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Gene Deletion , Hepatocytes/metabolism , Hepatomegaly/prevention & control , Humans , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Metabolic Syndrome/metabolism , Metabolism, Inborn Errors/prevention & control , Mice, Knockout , Neutrophils/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity/prevention & control , RNA, Messenger/genetics , Toll-Like Receptor 9/deficiency , Toll-Like Receptor 9/genetics
5.
J Lipid Res ; 58(6): 1067-1079, 2017 06.
Article in English | MEDLINE | ID: mdl-28404639

ABSTRACT

We recently reported that cholesterol crystals form in hepatocyte lipid droplets (LDs) in human and experimental nonalcoholic steatohepatitis. Herein, we assigned WT C57BL/6J mice to a high-fat (15%) diet for 6 months, supplemented with 0%, 0.25%, 0.5%, 0.75%, or 1% dietary cholesterol. Increasing dietary cholesterol led to cholesterol loading of the liver, but not of adipose tissue, resulting in fibrosing steatohepatitis at a dietary cholesterol concentration of ≥0.5%, whereas mice on lower-cholesterol diets developed only simple steatosis. Hepatic cholesterol crystals and crown-like structures also developed at a dietary cholesterol concentration ≥0.5%. Crown-like structures consisted of activated Kupffer cells (KCs) staining positive for NLRP3 and activated caspase 1, which surrounded and processed cholesterol crystal-containing remnant LDs of dead hepatocytes. The KCs processed LDs at the center of crown-like structures in the extracellular space by lysosomal enzymes, ultimately transforming into lipid-laden foam cells. When HepG2 cells were exposed to LDL cholesterol, they developed cholesterol crystals in LD membranes, which caused activation of THP1 cells (macrophages) grown in coculture; upregulation of TNF-alpha, NLRP3, and interleukin 1beta (IL1ß) mRNA; and secretion of IL-1beta. In conclusion, cholesterol crystals form on the LD membrane of hepatocytes and cause activation and cholesterol loading of KCs that surround and process these LDs by lysosomal enzymes.


Subject(s)
Cholesterol/chemistry , Hepatocytes/chemistry , Lipid Droplets/chemistry , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Animals , Cholesterol, Dietary/pharmacology , Crystallization , Diet, High-Fat/adverse effects , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Hep G2 Cells , Humans , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Male , Mice , Mice, Inbred C57BL , THP-1 Cells
6.
Hepatol Commun ; 1(7): 663-674, 2017 09.
Article in English | MEDLINE | ID: mdl-29404484

ABSTRACT

Lipotoxicity associated with insulin resistance is central to nonalcoholic steatohepatitis (NASH) pathogenesis. To date, only weight loss fully reverses NASH pathology, but mixed peroxisome proliferator-activated receptor-alpha/delta (PPAR-α/δ) agonists show some efficacy. Seladelpar (MBX-8025), a selective PPAR-δ agonist, improves atherogenic dyslipidemia. We therefore used this agent to test whether selective PPAR-δ activation can reverse hepatic lipotoxicity and NASH in an obese, dyslipidemic, and diabetic mouse model. From weaning, female Alms1 mutant (foz/foz) mice and wild-type littermates were fed an atherogenic diet for 16 weeks; groups (n = 8-12) were then randomized to receive MBX-8025 (10 mg/kg) or vehicle (1% methylcellulose) by gavage for 8 weeks. Despite minimally altering body weight, MBX-8025 normalized hyperglycemia, hyperinsulinemia, and glucose disposal in foz/foz mice. Serum alanine aminotransferase ranged 300-600 U/L in vehicle-treated foz/foz mice; MBX-8025 reduced alanine aminotransferase by 50%. In addition, MBX-8025 normalized serum lipids and hepatic levels of free cholesterol and other lipotoxic lipids that were increased in vehicle-treated foz/foz versus wild-type mice. This abolished hepatocyte ballooning and apoptosis, substantially reduced steatosis and liver inflammation, and improved liver fibrosis. In vehicle-treated foz/foz mice, the mean nonalcoholic fatty liver disease activity score was 6.9, indicating NASH; MBX-8025 reversed NASH in all foz/foz mice (nonalcoholic fatty liver disease activity score 3.13). Conclusion: Seladelpar improves insulin sensitivity and reverses dyslipidemia and hepatic storage of lipotoxic lipids to improve NASH pathology in atherogenic diet-fed obese diabetic mice. Selective PPAR-δ agonists act independently of weight reduction, but counter lipotoxicity related to insulin resistance, thereby providing a novel therapy for NASH. (Hepatology Communications 2017;1:663-674).

7.
J Lipid Res ; 56(2): 277-85, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25520429

ABSTRACT

Cholesterol crystals form within hepatocyte lipid droplets in human and experimental nonalcoholic steatohepatitis (NASH) and are the focus of crown-like structures (CLSs) of activated Kupffer cells (KCs). Obese, diabetic Alms1 mutant (foz/foz) mice were a fed high-fat (23%) diet containing 0.2% cholesterol for 16 weeks and then assigned to four intervention groups for 8 weeks: a) vehicle control, b) ezetimibe (5 mg/kg/day), c) atorvastatin (20 mg/kg/day), or d) ezetimibe and atorvastatin. Livers of vehicle-treated mice developed fibrosing NASH with abundant cholesterol crystallization within lipid droplets calculated to extend over 3.3% (SD, 2.2%) of liver surface area. Hepatocyte lipid droplets with prominent cholesterol crystallization were surrounded by TNFα-positive (activated) KCs forming CLSs (≥ 3 per high-power field). KCs that formed CLSs stained positive for NLRP3, implicating activation of the NLRP3 inflammasome in response to cholesterol crystals. In contrast, foz/foz mice treated with ezetimibe and atorvastatin showed near-complete resolution of cholesterol crystals [0.01% (SD, 0.02%) of surface area] and CLSs (0 per high-power field), with amelioration of fibrotic NASH. Ezetimibe or atorvastatin alone had intermediate effects on cholesterol crystallization, CLSs, and NASH. These findings are consistent with a causative link between exposure of hepatocytes and KCs to cholesterol crystals and with the development of NASH possibly mediated by NLRP3 activation.


Subject(s)
Anticholesteremic Agents/therapeutic use , Cholesterol/metabolism , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Animals , Anticholesteremic Agents/pharmacology , Atorvastatin , Azetidines/pharmacology , Azetidines/therapeutic use , Ezetimibe , Female , Heptanoic Acids/pharmacology , Heptanoic Acids/therapeutic use , Inflammasomes/drug effects , Inflammasomes/metabolism , Liver/drug effects , Liver/metabolism , Mice , Mice, Mutant Strains , Non-alcoholic Fatty Liver Disease/drug therapy , Pyrroles/pharmacology , Pyrroles/therapeutic use
8.
J Steroid Biochem Mol Biol ; 138: 368-75, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23959098

ABSTRACT

The oxysterols cholestan-3ß,5α,6ß-triol (Triol) and 3-keto-cholest-4-ene (3K4) are increased in Opisthorchis viverrini-associated hamster cholangiocarcinoma and induce DNA damage and apoptosis via a mitochondria-dependent mechanism in MMNK-1 human cholangiocytes. Based on these observations, we hypothesized that chronic exposure of cholangiocytes to these pathogenic oxysterols may allow a growth advantage to a subset of these cells through selection for resistance to apoptosis, thereby contributing to cholangiocarcinogenesis. To test this hypothesis, we cultured MMNK-1 cells long-term in the presence of Triol. Alteration in survival and apoptotic factors of Triol-exposed cells were examined. Cells cultured long-term in the presence of Triol were resistant to H2O2-induced apoptosis, and demonstrated an increase in the phosphorylation of p38-α, CREB, ERK1/2 and c-Jun. Elevations in the ratio of Bcl-2/Bax and in the protein levels of anti-apoptotic factors including cIAP2, clusterin, and survivin were detected. These results show that long-term exposure of MNNK-1 cells to low doses of Triol selects for kinase-signaling molecules which regulate resistance to apoptosis and thereby enhance cell survival. Clonal expansion of such apoptosis-resistant cells may contribute to the genesis of cholangiocarcinoma.


Subject(s)
Apoptosis/drug effects , Cell Survival/drug effects , Cholangiocarcinoma/metabolism , Cholestanols/pharmacology , Blotting, Western , Cell Line, Tumor , Humans , Hydrogen Peroxide/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Obesity (Silver Spring) ; 21(6): 1189-99, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23666886

ABSTRACT

BACKGROUND: Alms1 mutant (foz/foz) mice develop hyperphagic obesity, diabetes, metabolic syndrome, and fatty liver (steatosis). High-fat (HF) feeding converts pathology from bland steatosis to nonalcoholic steatohepatitis (NASH) with fibrosis, which leads to cirrhosis in humans. OBJECTIVE: We sought to establish how dietary composition contributes to NASH pathogenesis. DESIGN AND METHODS: foz/foz mice were fed HF diet or chow 24 weeks, or switched HF to chow after 12 weeks. Serum ALT, NAFLD activity score (NAS), fibrosis severity, neutrophil, macrophage and apoptosis immunohistochemistry, uncoupling protein (UCP)2, ATP, NF-κB activation/expression of chemokines/adhesion molecules/fibrogenic pathways were determined. RESULT: HF intake upregulated liver fatty acid and cholesterol transporter, CD36. Dietary switch expanded adipose tissue and decreased hepatomegaly by lowering triglyceride, cholesterol ester, free cholesterol and diacylglyceride content of liver. There was no change in lipogenesis or fatty acid oxidation pathways; instead, CD36 was suppressed. These diet-induced changes in hepatic lipids improved NAS, reduced neutrophil infiltration, normalized UCP2 and increased ATP; this facilitated apoptosis with a change in macrophage phenotype favoring M2 cells. Dietary switch also abrogated NF-κB activation and chemokine/adhesion molecule expression, and arrested fibrosis by dampening stellate cell activation. CONCLUSION: Reversion to a physiological dietary composition after HF feeding in foz/foz mice alters body weight distribution but not obesity. This attenuates NASH severity and fibrotic progression by suppressing NF-κB activation and reducing neutrophil and macrophage activation. However, adipose inflammation persists and is associated with continuing apoptosis in the residual fatty liver disease. Taken together, these findings indicate that other measures, such as weight reduction, may be required to fully reverse obesity-related NASH.


Subject(s)
Diet , Fatty Liver/diet therapy , Liver Cirrhosis/diet therapy , Liver/pathology , Obesity/diet therapy , Adipose Tissue/metabolism , Animals , Apoptosis/physiology , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Dietary Fats/administration & dosage , Disease Models, Animal , Fatty Liver/complications , Hepatic Stellate Cells/metabolism , Inflammation/diet therapy , Inflammation/pathology , Ion Channels/genetics , Ion Channels/metabolism , Lipid Metabolism , Lipogenesis/physiology , Liver/metabolism , Liver Cirrhosis/pathology , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease , Obesity/complications , Obesity/pathology , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Triglycerides/metabolism , Uncoupling Protein 2 , Up-Regulation
10.
J Hepatol ; 59(1): 144-52, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23500152

ABSTRACT

BACKGROUND & AIMS: We have recently showed that hyperinsulinemia promotes hepatic free cholesterol (FC) accumulation in obese, insulin-resistant Alms1 mutant (foz/foz) mice with NASH. Here we tested whether cholesterol-lowering drugs reduce stress-activated c-Jun N-terminal kinase (JNK) activation, hepatocyte injury/apoptosis, inflammation, and fibrosis in this metabolic syndrome NASH model. METHODS: Female foz/foz and WT mice were fed HF (0.2% cholesterol) 16 weeks, before adding ezetimibe (5 mg/kg), atorvastatin (20 mg/kg), or both to diet, another 8 weeks. Hepatic lipidomic analysis, ALT, liver histology, Sirius Red morphometry, hepatic mRNA and protein expression and immunohistochemistry (IHC) for apoptosis (M30), macrophages (F4/80), and polymorphs (myeloperoxidase) were determined. RESULTS: In mice with NASH, ezetimibe/atorvastatin combination normalized hepatic FC but did not alter saturated free fatty acids (FFA) and had minimal effects on other lipids; ezetimibe and atorvastatin had similar but less profound effects. Pharmacological lowering of FC abolished JNK activation, improved serum ALT, apoptosis, liver inflammation/NAFLD activity score, designation as "NASH", macrophage chemotactic protein-1 expression, reduced macrophage and polymorph populations, and liver fibrosis. CONCLUSIONS: Cholesterol lowering with ezetimibe/atorvastatin combination reverses hepatic FC but not saturated FFA accumulation. This dampens JNK activation, ALT release, hepatocyte apoptosis, and inflammatory recruitment, with reversal of steatohepatitis pathology and liver fibrosis. Ezetimibe/statin combination is a potent, mechanism-based treatment that could reverse NASH and liver fibrosis.


Subject(s)
Anticholesteremic Agents/therapeutic use , Diabetes Complications/drug therapy , Fatty Liver/drug therapy , Metabolic Syndrome/drug therapy , Adiponectin/blood , Animals , Anticholesteremic Agents/administration & dosage , Atorvastatin , Azetidines/administration & dosage , Azetidines/therapeutic use , Cholesterol/metabolism , Diabetes Complications/metabolism , Diabetes Complications/pathology , Drug Therapy, Combination , Ezetimibe , Fatty Liver/complications , Fatty Liver/metabolism , Female , Heptanoic Acids/administration & dosage , Heptanoic Acids/therapeutic use , Insulin/blood , Liver/drug effects , Liver/metabolism , Liver/pathology , MAP Kinase Signaling System/drug effects , Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Mice , Mice, Mutant Strains , Mice, Obese , Non-alcoholic Fatty Liver Disease , Pyrroles/administration & dosage , Pyrroles/therapeutic use
11.
J Lipid Res ; 54(5): 1326-34, 2013 May.
Article in English | MEDLINE | ID: mdl-23417738

ABSTRACT

We sought to determine whether hepatic cholesterol crystals are present in patients or mice with nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NASH), and whether their presence or distribution correlates with the presence of NASH as compared with simple steatosis. We identified, by filipin staining, free cholesterol within hepatocyte lipid droplets in patients with NASH and in C57BL/6J mice that developed NASH following a high-fat high-cholesterol diet. Under polarized light these lipid droplets exhibited strong birefringence suggesting that some of the cholesterol was present in the form of crystals. Activated Kupffer cells aggregated around dead hepatocytes that included strongly birefringent cholesterol crystals, forming "crown-like structures" similar to those recently described in inflamed visceral adipose tissue. These Kupffer cells appeared to process the lipid of dead hepatocytes turning it into activated lipid-laden "foam cells" with numerous small cholesterol-containing droplets. In contrast, hepatocyte lipid droplets in patients and mice with simple steatosis did not exhibit cholesterol crystals and their Kupffer cells did not form crown-like structures or transform into foam cells. Our results suggest that cholesterol crystallization within hepatocyte lipid droplets and aggregation and activation of Kupffer cells in crown-like structures around such droplets represent an important, novel mechanism for progression of simple steatosis to NASH.


Subject(s)
Cholesterol/metabolism , Fatty Liver/metabolism , Hepatocytes/metabolism , Animals , Cell Aggregation , Cholesterol/chemistry , Diagnosis, Differential , Diet, High-Fat , Fatty Liver/diagnosis , Fatty Liver/pathology , Hepatocytes/chemistry , Humans , Kupffer Cells/chemistry , Kupffer Cells/metabolism , Lipids/analysis , Liquid Crystals/chemistry , Male , Mice , Non-alcoholic Fatty Liver Disease
12.
Hepatology ; 57(1): 81-92, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22508243

ABSTRACT

UNLABELLED: The majority of patients with nonalcoholic fatty liver disease (NAFLD) have "simple steatosis," which is defined by hepatic steatosis in the absence of substantial inflammation or fibrosis and is considered to be benign. However, 10%-30% of patients with NAFLD progress to fibrosing nonalcoholic steatohepatitis (NASH), which is characterized by varying degrees of hepatic inflammation and fibrosis, in addition to hepatic steatosis, and can lead to cirrhosis. The cause(s) of progression to fibrosing steatohepatitis are unclear. We aimed to test the relative contributions of dietary fat and dietary cholesterol and their interaction on the development of NASH. We assigned C57BL/6J mice to four diets for 30 weeks: control (4% fat and 0% cholesterol); high cholesterol (HC; 4% fat and 1% cholesterol); high fat (HF; 15% fat and 0% cholesterol); and high fat, high cholesterol (HFHC; 15% fat and 1% cholesterol). The HF and HC diets led to increased hepatic fat deposition with little inflammation and no fibrosis (i.e., simple hepatic steatosis). However, the HFHC diet led to significantly more profound hepatic steatosis, substantial inflammation, and perisinusoidal fibrosis (i.e., steatohepatitis), associated with adipose tissue inflammation and a reduction in plasma adiponectin levels. In addition, the HFHC diet led to other features of human NASH, including hypercholesterolemia and obesity. Hepatic and metabolic effects induced by dietary fat and cholesterol together were more than twice as great as the sum of the separate effects of each dietary component alone, demonstrating significant positive interaction. CONCLUSION: Dietary fat and dietary cholesterol interact synergistically to induce the metabolic and hepatic features of NASH, whereas neither factor alone is sufficient to cause NASH in mice.


Subject(s)
Cholesterol, Dietary/adverse effects , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Liver/etiology , Adiponectin/blood , Adipose Tissue/immunology , Animals , Bile Acids and Salts/biosynthesis , Fatty Acids/metabolism , Fatty Liver/pathology , Lipid Metabolism , Lipids/blood , Lipoproteins, VLDL/biosynthesis , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , RNA, Messenger/metabolism , Weight Gain
13.
Asian Pac J Cancer Prev ; 13 Suppl: 77-82, 2012.
Article in English | MEDLINE | ID: mdl-23480749

ABSTRACT

Bile acids are implicated as aetiological factors in many types of gastrointestinal tract cancer including cholangiocarcinoma (CCA). Alterations in bile acid concentrations may affect the pathogenesis of these different types of cancer. Our aim was to determine the bile acid profile in gallbladder bile from patients who underwent liver resection. Thirty-seven patients with cholangiocarcinoma, 5 with hepatocellular carcinoma, and 7 with benign biliary diseases were studied. High pressure liquid chromatography was used to analyze conjugated and unconjugated bile acids. CCA patients with low (≤ 2 mg/dl) and high (>2 mg/dl) levels of total serum bilirubin had significantly higher total bile acid and conjugated bile acid concentrations than the benign biliary disease group. Markedly elevated levels of cholic and chenodeoxycholic acid were found in CCA cases with high levels of total serum bilirubin. Concentrations of total bile acids and primary bile acid were correlated with serum cholesterol, bilirubin and ALP in CCA. Notably, correlation of the carcinoembryonic antigen, a tumor marker, was found with level of total bile acids and chenodeoxycholic acid. These findings suggest a different pattern of bile acid concentration in cancer patients compared to patients with benign biliary diseases. Thus, accumulation of certain bile acids may be involved in carcinogenesis.


Subject(s)
Bile Acids and Salts , Carcinoma, Hepatocellular , Bile Duct Neoplasms/blood , Bile Ducts, Intrahepatic , Cholangiocarcinoma , Humans , Liver Neoplasms
14.
Mutat Res ; 731(1-2): 48-57, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22044627

ABSTRACT

Oxysterols are cholesterol oxidation products that are generated by enzymatic reactions through cytochrome P450 family enzymes or by non-enzymatic reactions involving reactive oxygen and nitrogen species. Oxysterols have been identified in bile in the setting of chronic inflammation, suggesting that biliary epithelial cells are chronically exposed to these compounds in certain clinical settings. We hypothesized that biliary oxysterols resulting from liver fluke infection participate in cholangiocarcinogenesis. Using gas chromatography/mass spectrometry, we identified oxysterols in livers from hamsters infected with Opisthorchis viverrini that develop cholangiocarcinoma. Five oxysterols were found: 7-keto-cholesta-3,5-diene (7KD), 3-keto-cholest-4-ene (3K4), 3-keto-cholest-7-ene (3K7), 3-keto-cholesta-4,6-diene (3KD), and cholestan-3ß,5α,6ß-triol (Triol). Triol and 3K4 were found at significantly higher levels in the livers of hamsters with O. viverrini-induced cholangiocarcinoma. We therefore investigated the effects of Triol and 3K4 on induction of cholangiocarcinogenesis using an in vitro human cholangiocyte culture model. Triol- and 3K4-treated cells underwent apoptosis. Western blot analysis showed significantly increased levels of Bax and decreased levels of Bcl-2 in these cells. Increased cytochrome c release from mitochondria was found following treatment with Triol and 3K4. Triol and 3K4 also induced formation of the DNA adducts 1,N(6)-etheno-2'-deoxyadenosine, 3,N(4)-etheno-2'-deoxycytidine and 8-oxo-7,8-dihydro-2'-deoxyguanosine in cholangiocytes. The data suggest that Triol and 3K4 cause DNA damage via oxidative stress. Chronic liver fluke infection increases production of the oxysterols Triol and 3K4 in the setting of chronic inflammation in the biliary system. These oxysterols induce apoptosis and DNA damage in cholangiocytes. Insufficient and impaired DNA repair of such mutated cells may enhance clonal expansion and further drive the change in cellular phenotype from normal to malignant.


Subject(s)
Cholangiocarcinoma/metabolism , Cholestanol/metabolism , Cholestenones/metabolism , DNA Damage , Fascioliasis/metabolism , Liver/metabolism , Animals , Apoptosis/drug effects , Cells, Cultured , Cricetinae , Fasciola hepatica/metabolism , Humans , Mesocricetus
15.
Gastroenterology ; 141(4): 1393-403, 1403.e1-5, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21703998

ABSTRACT

BACKGROUND & AIMS: Type 2 diabetes and nonalcoholic steatohepatitis (NASH) are associated with insulin resistance and disordered cholesterol homeostasis. We investigated the basis for hepatic cholesterol accumulation with insulin resistance and its relevance to the pathogenesis of NASH. METHODS: Alms1 mutant (foz/foz) and wild-type NOD.B10 mice were fed high-fat diets that contained varying percentages of cholesterol; hepatic lipid pools and pathways of cholesterol turnover were determined. Hepatocytes were exposed to insulin concentrations that circulate in diabetic foz/foz mice. RESULTS: Hepatic cholesterol accumulation was attributed to up-regulation of low-density lipoprotein receptor via activation of sterol regulatory element binding protein 2 (SREBP-2), reduced biotransformation to bile acids, and suppression of canalicular pathways for cholesterol and bile acid excretion in bile. Exposing primary hepatocytes to concentrations of insulin that circulate in diabetic Alms1 mice replicated the increases in SREBP-2 and low-density lipoprotein receptor and suppression of bile salt export pump. Removing cholesterol from diet prevented hepatic accumulation of free cholesterol and NASH; increasing dietary cholesterol levels exacerbated hepatic accumulation of free cholesterol, hepatocyte injury or apoptosis, macrophage recruitment, and liver fibrosis. CONCLUSIONS: In obese, diabetic mice, hyperinsulinemia alters nuclear transcriptional regulators of cholesterol homeostasis, leading to hepatic accumulation of free cholesterol; the resulting cytotoxicity mediates transition of steatosis to NASH.


Subject(s)
Cholesterol, Dietary/metabolism , Diabetes Complications/etiology , Diabetes Mellitus, Type 2/complications , Fatty Liver/etiology , Insulin Resistance , Insulin/metabolism , Liver/metabolism , Animals , Apoptosis , Bile Acids and Salts/metabolism , Cell Cycle Proteins , Cells, Cultured , DNA-Binding Proteins/genetics , Diabetes Complications/genetics , Diabetes Complications/metabolism , Diabetes Complications/pathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Esterification , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Female , Hepatocytes/metabolism , Hydrolysis , Liver/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Macrophages/metabolism , Mice , Mice, Inbred NOD , Mutation , Non-alcoholic Fatty Liver Disease , Receptors, LDL/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Time Factors
16.
J Lipid Res ; 52(9): 1626-35, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21690266

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver disease. Mechanisms that underlie this progression remain poorly understood, partly due to lack of good animal models that resemble human NASH. We previously showed that several metabolic syndrome features that develop in LDL receptor-deficient (LDLR-/-) mice fed a diabetogenic diet are worsened by dietary cholesterol. To test whether dietary cholesterol can alter the hepatic phenotype in the metabolic syndrome, we fed LDLR-/- mice a high-fat, high-carbohydrate diabetogenic diet (DD) without or with added cholesterol (DDC). Both groups of mice developed obesity and insulin resistance. Hyperinsulinemia, dyslipidemia, hepatic triglyceride, and alanine aminotransferase (ALT) elevations were greater with DDC. Livers of DD-fed mice showed histological changes resembling NAFLD, including steatosis and modest fibrotic changes; however, DDC-fed animals developed micro- and macrovesicular steatosis, inflammatory cell foci, and fibrosis resembling human NASH. Dietary cholesterol also exacerbated hepatic macrophage infiltration, apoptosis, and oxidative stress. Thus, LDLR-/- mice fed diabetogenic diets may be useful models for studying human NASH. Dietary cholesterol appears to confer a second "hit" that results in a distinct hepatic phenotype characterized by increased inflammation and oxidative stress.


Subject(s)
Cholesterol, Dietary/adverse effects , Fatty Liver/etiology , Inflammation/etiology , Mice, Obese , Receptors, LDL/deficiency , Animals , Apoptosis/physiology , Cholesterol, Dietary/metabolism , Diet , Disease Progression , Fatty Liver/complications , Fatty Liver/pathology , Fatty Liver/physiopathology , Humans , Inflammation/pathology , Inflammation/physiopathology , Liver/metabolism , Liver/pathology , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Obesity/pathology , Obesity/physiopathology , Oxidative Stress , Receptors, LDL/genetics
17.
J Hepatol ; 48(4): 638-47, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18280001

ABSTRACT

BACKGROUND/AIMS: We determined the effects of dietary lipid composition on steatohepatitis development with particular attention to the nature of lipid molecules that accumulate in the liver and pathways of hepatic triglyceride synthesis. METHODS: Mice were fed methionine and choline deficient (MCD) diets supplemented with 20% fat as lard (saturated) or olive oil (monounsaturated), for 3 weeks. RESULTS: Irrespective of dietary lipid composition, MCD-fed mice developed steatosis, ballooning degeneration and lobular inflammation. MCD-feeding increased hepatic free fatty acid (FFA) levels 2-3-fold, as well as total triglyceride levels. Hepatic FFA composition was characterized by increased ratio of monounsaturated: saturated FFA. There were reduced nuclear levels of the lipogenic transcription factor sterol regulatory element binding protein-1 in MCD-fed mice, but no consistent reduction in fatty acid synthesis genes (acetyl-CoA carboxylase and fatty acid synthase). Consistent with pathways of hepatic triglyceride synthesis, expression of diacylglycerol acyltransferase-1 and -2 was increased, as were delta-5- and delta-6- fatty acid desaturase mRNA levels. CONCLUSIONS: In this nutritional model of steatohepatitis, accumulation of FFA occurs despite substantial suppression of lipogenesis and induction of triglyceride synthesis genes. Accumulation of FFA supports a lipotoxicity mechanism for liver injury in this form of fatty liver disease.


Subject(s)
Fatty Acids, Nonesterified/metabolism , Fatty Liver/metabolism , Liver/metabolism , Acetyl-CoA Carboxylase/biosynthesis , Acetyl-CoA Carboxylase/genetics , Animals , Chromatography, Gas , Delta-5 Fatty Acid Desaturase , Diacylglycerol O-Acyltransferase/biosynthesis , Diacylglycerol O-Acyltransferase/genetics , Dietary Fats/pharmacology , Dietary Fats, Unsaturated/pharmacology , Disease Models, Animal , Disease Progression , Electrophoresis, Polyacrylamide Gel , Fatty Acid Desaturases/biosynthesis , Fatty Acid Desaturases/genetics , Fatty Acid Synthases/biosynthesis , Fatty Acid Synthases/genetics , Fatty Liver/pathology , Female , Gene Expression , Lipogenesis/physiology , Liver/pathology , Mice , Mice, Inbred C57BL , Olive Oil , Plant Oils/pharmacology , Polymerase Chain Reaction , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Sterol Regulatory Element Binding Protein 1/biosynthesis , Sterol Regulatory Element Binding Protein 1/genetics
18.
Am J Physiol Gastrointest Liver Physiol ; 293(5): G944-55, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17717044

ABSTRACT

We determined whether extrahepatic biliary epithelial cells can differentiate into cells with phenotypic features of hepatocytes. Gallbladders were removed from transgenic mice expressing hepatocyte-specific beta-galactosidase (beta-Gal) and cultured under standard conditions and under experimental conditions designed to induce differentiation into a hepatocyte-like phenotype. Gallbladder epithelial cells (GBEC) cultured under standard conditions exhibited no beta-Gal activity. beta-Gal expression was prominent in 50% of cells cultured under experimental conditions. Similar morphological changes were observed in GBEC from green fluorescent protein transgenic mice cultured under experimental conditions. These cells showed higher levels of mRNA for genes expressed in hepatocytes, but not in GBEC, including aldolase B, albumin, hepatocyte nuclear factor-4alpha, aldehyde dehydrogenase 1, and glutamine synthetase, and they synthesized bile acids. Additional functional evidence of a hepatocyte-like phenotype included LDL uptake and enhanced benzodiazepine metabolism. Connexin-32 expression was evident in murine hepatocytes and in cells cultured under experimental conditions, but not in cells cultured under standard conditions. Notch 1, 2, and 3 and Notch ligand Jagged 1 mRNAs were downregulated in these cells compared with cells cultured under standard conditions. CD34, alpha-fetoprotein, and Sca-1 mRNA were not expressed in cells cultured under standard conditions, suggesting that the hepatocyte-like cells did not arise from hematopoietic stem cells or oval cells. These results point to future avenues for investigation into the potential use of GBEC in the treatment of liver disease.


Subject(s)
Epithelial Cells/cytology , Gallbladder/cytology , Hepatocytes/cytology , Animals , Cell Differentiation , Diazepam/pharmacokinetics , Genes, Reporter , Mice , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
19.
Biochem Biophys Res Commun ; 343(2): 467-9, 2006 May 05.
Article in English | MEDLINE | ID: mdl-16546125

ABSTRACT

Oxysterols are naturally occurring intermediates in the conversion of cholesterol to bile acids, the major route for elimination of cholesterol. Additionally, they are important signaling agents, particularly in control of cholesterol synthesis; however, some species also are cytotoxic and carcinogenic. Oxysterols in plasma, contained in oxidized low-density lipoprotein, are strongly correlated with atherosclerosis. Oxysterols are found in infected human bile and the oxysterol content in gallstones correlates with bacterial DNA in the stones. Here we demonstrate that human leukocytes, activated by the presence of bacterial lipopolysaccharide, are able to oxidize cholesterol to a variety of oxysterols, including species known to be carcinogenic.


Subject(s)
Bile/metabolism , Cholesterol/metabolism , Leukocytes/metabolism , Lipopolysaccharides/administration & dosage , Neutrophil Activation/physiology , Sterols/biosynthesis , Cells, Cultured , Humans , Leukocytes/drug effects , Neutrophil Activation/drug effects
20.
J Am Coll Surg ; 201(5): 710-20, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16256913

ABSTRACT

BACKGROUND: We hypothesized that ileal stem cell clusters transplanted into a segment of jejunum can be used to treat bile acid malabsorption. STUDY DESIGN: In adult Lewis rats, a 15-cm segment of jejunum was isolated with its blood circulation left intact and partially stripped of enterocytes using luminal high-velocity perfusions with 3mmol/L ethylenediamine tetra-acetic acid solutions. Continuity was restored by anastomosing the proximal and distal gut. Ileal stem cell clusters were harvested from neonatal Lewis rats and transplanted into the stripped segments to generate a "neoileum." After 4weeks, recipients underwent resection of the native ileum, and the isolated neoileum was anastomosed in its place. After an additional 4weeks, a 48-hour stool collection was performed. The engrafted segment was harvested for taurocholate uptake studies, ileal bile acid transporter (IBAT) protein by immunohistomorphometry, and IBAT mRNA quantitation by reverse transcription polymerease chain reaction. Data were analyzed by ANOVA/t-test. Rats undergoing ileectomy, jejunectomy, or sham operations served as controls. RESULTS: Total bile acid loss in the stool was markedly lower in rats with a neoileum compared with rats with an ileectomy (p < 0.001). Total taurocholate uptake was notably increased in the neoileum compared with the jejunum (p < 0.001). IBAT protein signal intensity was considerably higher in the neoileum compared with jejunum (p < 0.001). IBAT mRNA amounts in the neoileal group were comparable with those in normal rat ileum and were considerably higher (p = 0.003) than in the jejunum. CONCLUSIONS: Ileal stem cell clusters were used to establish a new zone of bile acid uptake and IBAT expression in a jejunal segment. This neoileum eliminated loss of bile acids in the stool after ileectomy. This is the first time that transplantation of intestinal stem cell clusters has been shown to correct a clinical malabsorption syndrome.


Subject(s)
Bile Acids and Salts/metabolism , Ileum/transplantation , Malabsorption Syndromes/surgery , Stem Cell Transplantation/methods , Animals , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...