Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Npj Imaging ; 2(1)2024.
Article in English | MEDLINE | ID: mdl-38939049

ABSTRACT

In the field of optical imaging, the ability to image tumors at depth with high selectivity and specificity remains a challenge. Surface enhanced resonance Raman scattering (SERRS) nanoparticles (NPs) can be employed as image contrast agents to specifically target cells in vivo; however, this technique typically requires time-intensive point-by-point acquisition of Raman spectra. Here, we combine the use of "spatially offset Raman spectroscopy" (SORS) with that of SERRS in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESORRS) to image deep-seated tumors in vivo. Additionally, by accounting for the laser spot size, we report an experimental approach for detecting both the bulk tumor, subsequent delineation of tumor margins at high speed, and the identification of a deeper secondary region of interest with fewer measurements than are typically applied. To enhance light collection efficiency, four modifications were made to a previously described custom-built SORS system. Specifically, the following parameters were increased: (i) the numerical aperture (NA) of the lens, from 0.2 to 0.34; (ii) the working distance of the probe, from 9 mm to 40 mm; (iii) the NA of the fiber, from 0.2 to 0.34; and (iv) the fiber diameter, from 100 µm to 400 µm. To calculate the sampling frequency, which refers to the number of data point spectra obtained for each image, we considered the laser spot size of the elliptical beam (6 × 4 mm). Using SERRS contrast agents, we performed in vivo SESORRS imaging on a GL261-Luc mouse model of glioblastoma at four distinct sampling frequencies: par-sampling frequency (12 data points collected), and over-frequency sampling by factors of 2 (35 data points collected), 5 (176 data points collected), and 10 (651 data points collected). In comparison to the previously reported SORS system, the modified SORS instrument showed a 300% improvement in signal-to-noise ratios (SNR). The results demonstrate the ability to acquire distinct Raman spectra from deep-seated glioblastomas in mice through the skull using a low power density (6.5 mW/mm2) and 30-times shorter integration times than a previous report (0.5 s versus 15 s). The ability to map the whole head of the mouse and determine a specific region of interest using as few as 12 spectra (6 s total acquisition time) is achieved. Subsequent use of a higher sampling frequency demonstrates it is possible to delineate the tumor margins in the region of interest with greater certainty. In addition, SESORRS images indicate the emergence of a secondary tumor region deeper within the brain in agreement with MRI and H&E staining. In comparison to traditional Raman imaging approaches, this approach enables improvements in the detection of deep-seated tumors in vivo through depths of several millimeters due to improvements in SNR, spectral resolution, and depth acquisition. This approach offers an opportunity to navigate larger areas of tissues in shorter time frames than previously reported, identify regions of interest, and then image the same area with greater resolution using a higher sampling frequency. Moreover, using a SESORRS approach, we demonstrate that it is possible to detect secondary, deeper-seated lesions through the intact skull.

2.
Cell Rep ; 43(4): 113975, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38507411

ABSTRACT

The intestine is a highly metabolic tissue, but the metabolic programs that influence intestinal crypt proliferation, differentiation, and regeneration are still emerging. Here, we investigate how mitochondrial sirtuin 4 (SIRT4) affects intestinal homeostasis. Intestinal SIRT4 loss promotes cell proliferation in the intestine following ionizing radiation (IR). SIRT4 functions as a tumor suppressor in a mouse model of intestinal cancer, and SIRT4 loss drives dysregulated glutamine and nucleotide metabolism in intestinal adenomas. Intestinal organoids lacking SIRT4 display increased proliferation after IR stress, along with increased glutamine uptake and a shift toward de novo nucleotide biosynthesis over salvage pathways. Inhibition of de novo nucleotide biosynthesis diminishes the growth advantage of SIRT4-deficient organoids after IR stress. This work establishes SIRT4 as a modulator of intestinal metabolism and homeostasis in the setting of DNA-damaging stress.


Subject(s)
Cell Proliferation , Intestinal Neoplasms , Intestines , Sirtuins , Animals , Humans , Mice , Glutamine/metabolism , Homeostasis , Intestinal Mucosa/metabolism , Intestinal Neoplasms/metabolism , Intestinal Neoplasms/pathology , Intestinal Neoplasms/genetics , Intestines/metabolism , Intestines/pathology , Mice, Inbred C57BL , Mitochondrial Proteins , Nucleotides/metabolism , Organoids/metabolism , Sirtuins/metabolism
3.
Cancer Epidemiol Biomarkers Prev ; 33(1): 158-169, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37943166

ABSTRACT

BACKGROUND: KRAS is among the most commonly mutated oncogenes in cancer, and previous studies have shown associations with survival in many cancer contexts. Evidence from both clinical observations and mouse experiments further suggests that these associations are allele- and tissue-specific. These findings motivate using clinical data to understand gene interactions and clinical covariates within different alleles and tissues. METHODS: We analyze genomic and clinical data from the AACR Project GENIE Biopharma Collaborative for samples from lung, colorectal, and pancreatic cancers. For each of these cancer types, we report epidemiological associations for different KRAS alleles, apply principal component analysis (PCA) to discover groups of genes co-mutated with KRAS, and identify distinct clusters of patient profiles with implications for survival. RESULTS: KRAS mutations were associated with inferior survival in lung, colon, and pancreas, although the specific mutations implicated varied by disease. Tissue- and allele-specific associations with smoking, sex, age, and race were found. Tissue-specific genetic interactions with KRAS were identified by PCA, which were clustered to produce five, four, and two patient profiles in lung, colon, and pancreas. Membership in these profiles was associated with survival in all three cancer types. CONCLUSIONS: KRAS mutations have tissue- and allele-specific associations with inferior survival, clinical covariates, and genetic interactions. IMPACT: Our results provide greater insight into the tissue- and allele-specific associations with KRAS mutations and identify clusters of patients that are associated with survival and clinical attributes from combinations of genetic interactions with KRAS mutations.


Subject(s)
Lung Neoplasms , Pancreatic Neoplasms , Animals , Humans , Lung , Lung Neoplasms/genetics , Mutation , Pancreas , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics
4.
Cancer Res ; 83(24): 4005-4007, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38098448

ABSTRACT

The development of direct inhibitors of KRASG12C represents a monumental step forward in the field of oncology. Nevertheless, there is considerable opportunity to enhance response rates to KRASG12C inhibitors. In this issue of Cancer Research, three investigative teams explore the modulation of KRASG12C inhibitor activity in lung, colorectal, and pancreatic cancers using CRISPR-based knockout screens. While each group identified and validated a variety of genes and pathways conferring resistance to KRASG12C inhibition, all three groups converged upon activation of YAP/TAZ as a common means of resistance. While coinhibition of KRASG12C and YAP/TAZ did not cause complete tumor regression in xenograft models, combining YAP/TAZ inhibition was capable of significantly extending the response of tumors to KRASG12C inhibition. See related articles by Mukhopadhyay et al., p. 4095, Edwards et al., p. 4112, and Prahallad et al., p. 4130.


Subject(s)
Adaptor Proteins, Signal Transducing , Pancreatic Neoplasms , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Trans-Activators/metabolism , YAP-Signaling Proteins , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Rome , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism
5.
Cancer Res ; 83(19): 3176-3183, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37556505

ABSTRACT

RAS proteins are GTPases that regulate a wide range of cellular processes. RAS activity is dependent on its nucleotide-binding status, which is modulated by guanine nucleotide exchange factors (GEF) and GTPase-activating proteins (GAP). KRAS can be acetylated at lysine 104 (K104), and an acetylation-mimetic mutation of K104 to glutamine (K104Q) attenuates the in vitro-transforming capacity of oncogenic KRAS by interrupting GEF-induced nucleotide exchange. To assess the effect of this mutation in vivo, we used CRISPR-Cas9 to generate mouse models carrying the K104Q point mutation in wild-type and conditional KrasLSL-G12D alleles. Homozygous animals for K104Q were viable, fertile, and arose at the expected Mendelian frequency, indicating that K104Q is not a complete loss-of-function mutation. Consistent with our previous findings from in vitro studies, however, the oncogenic activity of KRASG12D was significantly attenuated by mutation at K104. Biochemical and structural analysis indicated that the G12D and K104Q mutations cooperate to suppress GEF-mediated nucleotide exchange, explaining the preferential effect of K104Q on oncogenic KRAS. Furthermore, K104 functioned in an allosteric network with M72, R73, and G75 on the α2 helix of the switch-II region. Intriguingly, point mutation of glycine 75 to alanine (G75A) also showed a strong negative regulatory effect on KRASG12D. These data demonstrate that lysine at position 104 is critical for the full oncogenic activity of mutant KRAS and suggest that modulating the sites in its allosteric network may provide a unique therapeutic approach in cancers expressing mutant KRAS. SIGNIFICANCE: An allosteric network formed by interaction between lysine 104 and residues in the switch-II domain is required for KRAS oncogenicity, which could be exploited for developing inhibitors of the activated oncoprotein.


Subject(s)
Lysine , Proto-Oncogene Proteins p21(ras) , Animals , Mice , Allosteric Regulation , Guanine Nucleotide Exchange Factors/metabolism , Lysine/metabolism , Mutation , Nucleotides/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/metabolism
6.
Mol Cell ; 83(14): 2509-2523.e13, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37402366

ABSTRACT

K-Ras frequently acquires gain-of-function mutations (K-RasG12D being the most common) that trigger significant transcriptomic and proteomic changes to drive tumorigenesis. Nevertheless, oncogenic K-Ras-induced dysregulation of post-transcriptional regulators such as microRNAs (miRNAs) during oncogenesis is poorly understood. Here, we report that K-RasG12D promotes global suppression of miRNA activity, resulting in the upregulation of hundreds of targets. We constructed a comprehensive profile of physiological miRNA targets in mouse colonic epithelium and tumors expressing K-RasG12D using Halo-enhanced Argonaute pull-down. Combining this with parallel datasets of chromatin accessibility, transcriptome, and proteome, we uncovered that K-RasG12D suppressed the expression of Csnk1a1 and Csnk2a1, subsequently decreasing Ago2 phosphorylation at Ser825/829/832/835. Hypo-phosphorylated Ago2 increased binding to mRNAs while reducing its activity to repress miRNA targets. Our findings connect a potent regulatory mechanism of global miRNA activity to K-Ras in a pathophysiological context and provide a mechanistic link between oncogenic K-Ras and the post-transcriptional upregulation of miRNA targets.


Subject(s)
MicroRNAs , Neoplasms , Animals , Mice , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Genes, ras , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Proteomics
7.
Sci Signal ; 15(746): eabn2694, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35944066

ABSTRACT

Missense mutations at the three hotspots in the guanosine triphosphatase (GTPase) RAS-Gly12, Gly13, and Gln61 (commonly known as G12, G13, and Q61, respectively)-occur differentially among the three RAS isoforms. Q61 mutations in KRAS are infrequent and differ markedly in occurrence. Q61H is the predominant mutant (at 57%), followed by Q61R/L/K (collectively 40%), and Q61P and Q61E are the rarest (2 and 1%, respectively). Probability analysis suggested that mutational susceptibility to different DNA base changes cannot account for this distribution. Therefore, we investigated whether these frequencies might be explained by differences in the biochemical, structural, and biological properties of KRASQ61 mutants. Expression of KRASQ61 mutants in NIH 3T3 fibroblasts and RIE-1 epithelial cells caused various alterations in morphology, growth transformation, effector signaling, and metabolism. The relatively rare KRASQ61E mutant stimulated actin stress fiber formation, a phenotype distinct from that of KRASQ61H/R/L/P, which disrupted actin cytoskeletal organization. The crystal structure of KRASQ61E was unexpectedly similar to that of wild-type KRAS, a potential basis for its weak oncogenicity. KRASQ61H/L/R-mutant pancreatic ductal adenocarcinoma (PDAC) cell lines exhibited KRAS-dependent growth and, as observed with KRASG12-mutant PDAC, were susceptible to concurrent inhibition of ERK-MAPK signaling and of autophagy. Our results uncover phenotypic heterogeneity among KRASQ61 mutants and support the potential utility of therapeutic strategies that target KRASQ61 mutant-specific signaling and cellular output.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Actins , Carcinoma, Pancreatic Ductal/genetics , GTP Phosphohydrolases/genetics , Humans , Mutation , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms
8.
Cancer Discov ; 12(4): 913-923, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35373279

ABSTRACT

Members of the family of RAS proto-oncogenes, discovered just over 40 years ago, were among the first cancer-initiating genes to be discovered. Of the three RAS family members, KRAS is the most frequently mutated in human cancers. Despite intensive biological and biochemical study of RAS proteins over the past four decades, we are only now starting to devise therapeutic strategies to target their oncogenic properties. Here, we highlight the distinct biochemical properties of common and rare KRAS alleles, enabling their classification into functional subtypes. We also discuss the implications of this functional classification for potential therapeutic avenues targeting mutant subtypes. SIGNIFICANCE: Efforts in the recent past to inhibit KRAS oncogenicity have focused on kinases that function in downstream signal transduction cascades, although preclinical successes have not translated to patients with KRAS-mutant cancer. Recently, clinically effective covalent inhibitors of KRASG12C have been developed, establishing two principles that form a foundation for future efforts. First, KRAS is druggable. Second, each mutant form of KRAS is likely to have properties that make it uniquely druggable.


Subject(s)
Oncogenes , Proto-Oncogene Proteins p21(ras) , Genes, ras , Humans , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/genetics , ras Proteins/metabolism
9.
Mol Cell ; 82(5): 950-968.e14, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35202574

ABSTRACT

A unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg2+. Finally, we demonstrate that autophosphorylated K-RAS exhibits altered effector interactions, including a reduced affinity for RAF proteins in mammalian cells. Thus, autophosphorylation leads to altered active site dynamics and effector interaction properties, creating a pool of GTPases that are functionally distinct from their non-phosphorylated counterparts.


Subject(s)
GTP Phosphohydrolases , Signal Transduction , Animals , Crystallography, X-Ray , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism , Mammals/metabolism , Nucleotides , Proteins
10.
Trends Cancer ; 8(5): 384-396, 2022 05.
Article in English | MEDLINE | ID: mdl-35093302

ABSTRACT

K-RAS is frequently mutated in cancers, and its overactivation can lead to oncogene-induced senescence (OIS), a barrier to cellular transformation. Feedback onto K-RAS limits its signaling to avoid senescence while achieving the appropriate level of activation that promotes proliferation and survival. Such regulation could be mediated by miRNAs, as aberrant RAS signaling and miRNA activity coexist in several cancers, with miRNAs acting both up- and downstream of K-RAS. Several miRNAs both regulate and are regulated by K-RAS, suggesting a noncoding RNA-based feedback mechanism. Functional interactions between K-RAS and the miRNA machinery have also begun to unfold. This review comprehensively surveys the state of knowledge connecting K-RAS to miRNA function and proposes a model for the regulation of K-RAS signaling by noncoding RNAs.


Subject(s)
MicroRNAs , Neoplasms , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Neoplasms/genetics , Signal Transduction/genetics
11.
iScience ; 24(12): 103406, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34849469

ABSTRACT

Inflammatory bowel diseases (IBDs) are genetically complex and exhibit significant inter-patient heterogeneity in disease presentation and therapeutic response. Here, we show that mouse models of IBD exhibit variable responses to inhibition of MK2, a pro-inflammatory serine/threonine kinase, and that MK2 inhibition suppresses inflammation by targeting inflammatory monocytes and neutrophils in murine models. Using a computational approach (TransComp-R) that allows for cross-species comparison of transcriptomic features, we identified an IBD patient subgroup that is predicted to respond to MK2 inhibition, and an independent preclinical model of chronic intestinal inflammation predicted to be non-responsive, which we validated experimentally. Thus, cross-species mouse-human translation approaches can help to identify patient subpopulations in which to deploy new therapies.

12.
Science ; 373(6561): 1327-1335, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34529489

ABSTRACT

During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor's requirement to avoid the adaptive immune system.


Subject(s)
Carcinogenesis , Gene Silencing , Genes, Tumor Suppressor , Immune Evasion , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Chemokine CCL2/metabolism , Female , GTP-Binding Protein alpha Subunits, G12-G13/genetics , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Humans , Immune Evasion/genetics , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, SCID , Neoplasm Transplantation , Neoplasms, Experimental/pathology , Selection, Genetic , Tumor Microenvironment
13.
N Engl J Med ; 384(25): 2382-2393, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34161704

ABSTRACT

BACKGROUND: Clinical trials of the KRAS inhibitors adagrasib and sotorasib have shown promising activity in cancers harboring KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRASG12C). The mechanisms of acquired resistance to these therapies are currently unknown. METHODS: Among patients with KRASG12C -mutant cancers treated with adagrasib monotherapy, we performed genomic and histologic analyses that compared pretreatment samples with those obtained after the development of resistance. Cell-based experiments were conducted to study mutations that confer resistance to KRASG12C inhibitors. RESULTS: A total of 38 patients were included in this study: 27 with non-small-cell lung cancer, 10 with colorectal cancer, and 1 with appendiceal cancer. Putative mechanisms of resistance to adagrasib were detected in 17 patients (45% of the cohort), of whom 7 (18% of the cohort) had multiple coincident mechanisms. Acquired KRAS alterations included G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and high-level amplification of the KRASG12C allele. Acquired bypass mechanisms of resistance included MET amplification; activating mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN. In two of nine patients with lung adenocarcinoma for whom paired tissue-biopsy samples were available, histologic transformation to squamous-cell carcinoma was observed without identification of any other resistance mechanisms. Using an in vitro deep mutational scanning screen, we systematically defined the landscape of KRAS mutations that confer resistance to KRASG12C inhibitors. CONCLUSIONS: Diverse genomic and histologic mechanisms impart resistance to covalent KRASG12C inhibitors, and new therapeutic strategies are required to delay and overcome this drug resistance in patients with cancer. (Funded by Mirati Therapeutics and others; ClinicalTrials.gov number, NCT03785249.).


Subject(s)
Acetonitriles/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Mutation , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines/therapeutic use , Appendiceal Neoplasms/drug therapy , Appendiceal Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Colorectal Neoplasms/genetics , Humans , Lung Neoplasms/genetics , Protein Conformation , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/ultrastructure , Pyridines/therapeutic use
14.
J Proteome Res ; 20(7): 3678-3688, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34043369

ABSTRACT

Targeted mass spectrometry-based assays typically rely on previously acquired large data sets for peptide target selection. Such repositories are widely available for unlabeled peptides. However, they are less common for isobaric tagged peptides. Here we have assembled two series of six data sets originating from a mouse embryonic fibroblast cell line (NIH/3T3). One series is of peptides derived from a tryptic digest of a whole cell proteome and a second from enriched phosphopeptides. These data sets encompass three labeling approaches (unlabeled, TMT11-labeled, and TMTpro16-labeled) and two data acquisition strategies (ion trap MS2 with and without FAIMS-based gas phase separation). We identified a total of 1 509 526 peptide-spectrum matches which covered 11 482 proteins from the whole cell proteome tryptic digest, and 188 849 phosphopeptides from the phosphopeptide enrichment. The data sets were of similar depth, and while overlap across data sets was modest, protein overlap was high, thus reinforcing the comprehensiveness of these data sets. The data also supported FAIMS as a means to increase data set depth. These data sets provide a rich resource of peptides that may be used as starting points for targeted assays. Future data sets may be compiled for any genome-sequenced organism using the technologies and strategies highlighted herein. The data have been deposited in the ProteomeXchange Consortium with data set identifier PXD024298.


Subject(s)
Fibroblasts , Proteomics , Animals , Apoptosis Regulatory Proteins , Mass Spectrometry , Mice , Phosphopeptides , Proteome
15.
Nat Commun ; 12(1): 1808, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753749

ABSTRACT

Mutational activation of KRAS promotes the initiation and progression of cancers, especially in the colorectum, pancreas, lung, and blood plasma, with varying prevalence of specific activating missense mutations. Although epidemiological studies connect specific alleles to clinical outcomes, the mechanisms underlying the distinct clinical characteristics of mutant KRAS alleles are unclear. Here, we analyze 13,492 samples from these four tumor types to examine allele- and tissue-specific genetic properties associated with oncogenic KRAS mutations. The prevalence of known mutagenic mechanisms partially explains the observed spectrum of KRAS activating mutations. However, there are substantial differences between the observed and predicted frequencies for many alleles, suggesting that biological selection underlies the tissue-specific frequencies of mutant alleles. Consistent with experimental studies that have identified distinct signaling properties associated with each mutant form of KRAS, our genetic analysis reveals that each KRAS allele is associated with a distinct tissue-specific comutation network. Moreover, we identify tissue-specific genetic dependencies associated with specific mutant KRAS alleles. Overall, this analysis demonstrates that the genetic interactions of oncogenic KRAS mutations are allele- and tissue-specific, underscoring the complexity that drives their clinical consequences.


Subject(s)
Gene Regulatory Networks , Mutation , Neoplasms/genetics , Organ Specificity/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Alleles , Gene Expression Regulation, Neoplastic , Gene Frequency , Humans
16.
Cancer Discov ; 11(5): 1228-1247, 2021 05.
Article in English | MEDLINE | ID: mdl-33328217

ABSTRACT

KRAS-mutant colorectal cancers are resistant to therapeutics, presenting a significant problem for ∼40% of cases. Rapalogs, which inhibit mTORC1 and thus protein synthesis, are significantly less potent in KRAS-mutant colorectal cancer. Using Kras-mutant mouse models and mouse- and patient-derived organoids, we demonstrate that KRAS with G12D mutation fundamentally rewires translation to increase both bulk and mRNA-specific translation initiation. This occurs via the MNK/eIF4E pathway culminating in sustained expression of c-MYC. By genetic and small-molecule targeting of this pathway, we acutely sensitize KRASG12D models to rapamycin via suppression of c-MYC. We show that 45% of colorectal cancers have high signaling through mTORC1 and the MNKs, with this signature correlating with a 3.5-year shorter cancer-specific survival in a subset of patients. This work provides a c-MYC-dependent cotargeting strategy with remarkable potency in multiple Kras-mutant mouse models and metastatic human organoids and identifies a patient population that may benefit from its clinical application. SIGNIFICANCE: KRAS mutation and elevated c-MYC are widespread in many tumors but remain predominantly untargetable. We find that mutant KRAS modulates translation, culminating in increased expression of c-MYC. We describe an effective strategy targeting mTORC1 and MNK in KRAS-mutant mouse and human models, pathways that are also commonly co-upregulated in colorectal cancer.This article is highlighted in the In This Issue feature, p. 995.


Subject(s)
Colorectal Neoplasms/genetics , Eukaryotic Initiation Factor-4E/drug effects , Intracellular Signaling Peptides and Proteins/drug effects , MTOR Inhibitors/pharmacology , Protein Serine-Threonine Kinases/drug effects , Animals , Colorectal Neoplasms/metabolism , Disease Models, Animal , Eukaryotic Initiation Factor-4E/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
17.
Mol Cell ; 79(1): 167-179.e11, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32497496

ABSTRACT

The identification of microRNA (miRNA) targets by Ago2 crosslinking-immunoprecipitation (CLIP) methods has provided major insights into the biology of this important class of non-coding RNAs. However, these methods are technically challenging and not easily applicable to an in vivo setting. To overcome these limitations and facilitate the investigation of miRNA functions in vivo, we have developed a method based on a genetically engineered mouse harboring a conditional Halo-Ago2 allele expressed from the endogenous Ago2 locus. By using a resin conjugated to the HaloTag ligand, Ago2-miRNA-mRNA complexes can be purified from cells and tissues expressing the endogenous Halo-Ago2 allele. We demonstrate the reproducibility and sensitivity of this method in mouse embryonic stem cells, developing embryos, adult tissues, and autochthonous mouse models of human brain and lung cancers. This method and the datasets we have generated will facilitate the characterization of miRNA-mRNA networks in vivo under physiological and pathological conditions.


Subject(s)
Argonaute Proteins/physiology , Embryonic Stem Cells/metabolism , Glioma/metabolism , MicroRNAs/metabolism , RNA, Messenger/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Embryonic Stem Cells/cytology , Female , Gene Expression Regulation , Glioma/genetics , Glioma/pathology , High-Throughput Nucleotide Sequencing , Hydrolases/genetics , Mice , Mice, Knockout , MicroRNAs/genetics , Protein Binding , RNA, Messenger/genetics , Recombinant Fusion Proteins/genetics
18.
Nat Chem Biol ; 16(6): 635-643, 2020 06.
Article in English | MEDLINE | ID: mdl-32251410

ABSTRACT

Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to develop a selective, in vivo-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA-sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Movement , Doublecortin Protein , Doublecortin-Like Kinases , Drug Screening Assays, Antitumor , Gene Expression Regulation , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacokinetics , Proteomics , Rats , Structure-Activity Relationship , Zebrafish , Pancreatic Neoplasms
19.
Blood ; 135(20): 1772-1782, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32219446

ABSTRACT

Oncogenic RAS mutations pose substantial challenges for rational drug discovery. Sequence variations within the hypervariable region of Ras isoforms underlie differential posttranslational modification and subcellular trafficking, potentially resulting in selective vulnerabilities. Specifically, inhibiting the palmitoylation/depalmitoylation cycle is an appealing strategy for treating NRAS mutant cancers, particularly as normal tissues would retain K-Ras4b function for physiologic signaling. The role of endogenous N-RasG12D palmitoylation in signal transduction, hematopoietic differentiation, and myeloid transformation is unknown, and addressing these key questions will inform efforts to develop mechanism-based therapies. To evaluate the palmitoylation/depalmitoylation cycle as a candidate drug target in an in vivo disease-relevant model system, we introduced a C181S mutation into a conditional NrasG12D "knock-in" allele. The C181S second-site amino acid substitution abrogated myeloid transformation by NrasG12D, which was associated with mislocalization of the nonpalmitoylated N-Ras mutant protein, reduced Raf/MEK/ERK signaling, and alterations in hematopoietic stem and progenitor populations. Furthermore, hematologic malignancies arising in NrasG12D/G12D,C181S compound heterozygous mice invariably acquired revertant mutations that restored cysteine 181. Together, these studies validate the palmitoylation cycle as a promising therapeutic target in NRAS mutant cancers.


Subject(s)
Cell Transformation, Neoplastic/genetics , Hematologic Neoplasms/genetics , Hematopoiesis/genetics , Lipoylation/genetics , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Amino Acid Substitution , Animals , Aspartic Acid/genetics , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Glycine/genetics , Hematologic Neoplasms/metabolism , Hematopoietic Stem Cells/physiology , Metabolic Networks and Pathways/genetics , Mice , Mice, Transgenic , Palmitic Acid/metabolism
20.
Front Immunol ; 11: 607891, 2020.
Article in English | MEDLINE | ID: mdl-33708191

ABSTRACT

Chronic inflammation increases the risk for colorectal cancer through a variety of mechanisms involving the tumor microenvironment. MAPK-activated protein kinase 2 (MK2), a major effector of the p38 MAPK stress and DNA damage response signaling pathway, and a critical regulator of pro-inflammatory cytokine production, has been identified as a key contributor to colon tumorigenesis under conditions of chronic inflammation. We have previously described how genetic inactivation of MK2 in an inflammatory model of colon cancer results in delayed tumor progression, decreased tumor angiogenesis, and impaired macrophage differentiation into a pro-tumorigenic M2-like state. The molecular mechanism responsible for the impaired angiogenesis and tumor progression, however, has remained contentious and poorly defined. Here, using RNA expression analysis, assays of angiogenesis factors, genetic models, in vivo macrophage depletion and reconstitution of macrophage MK2 function using adoptive cell transfer, we demonstrate that MK2 activity in macrophages is necessary and sufficient for tumor angiogenesis during inflammation-induced cancer progression. We identify a critical and previously unappreciated role for MK2-dependent regulation of the well-known pro-angiogenesis factor CXCL-12/SDF-1 secreted by tumor associated-macrophages, in addition to MK2-dependent regulation of Serpin-E1/PAI-1 by several cell types within the tumor microenvironment.


Subject(s)
Angiogenic Proteins/metabolism , Colitis-Associated Neoplasms/enzymology , Intracellular Signaling Peptides and Proteins/metabolism , Neovascularization, Pathologic , Protein Serine-Threonine Kinases/metabolism , Tumor-Associated Macrophages/enzymology , Adoptive Transfer , Angiogenic Proteins/genetics , Animals , Cells, Cultured , Colitis-Associated Neoplasms/genetics , Colitis-Associated Neoplasms/pathology , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Transcription, Genetic , Tumor Microenvironment , Tumor-Associated Macrophages/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...