Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 117: 399-411, 2024 03.
Article in English | MEDLINE | ID: mdl-38309639

ABSTRACT

BACKGROUND: Autoantibodies against the potassium voltage-gated channel subfamily A member 2 (KCNA2) have been described in a few cases of neuropsychiatric disorders, but their diagnostic and pathophysiological role is currently unknown, imposing challenges to medical practice. DESIGN / METHODS: We retrospectively collected comprehensive clinical and paraclinical data of 35 patients with KCNA2 IgG autoantibodies detected in cell-based and tissue-based assays. Patients' sera and cerebrospinal fluid (CSF) were used for characterization of the antigen, clinical-serological correlations, and determination of IgG subclasses. RESULTS: KCNA2 autoantibody-positive patients (n = 35, median age at disease onset of 65 years, range of 16-83 years, 74 % male) mostly presented with cognitive impairment and/or epileptic seizures but also ataxia, gait disorder and personality changes. Serum autoantibodies belonged to IgG3 and IgG1 subclasses and titers ranged from 1:32 to 1:10,000. KCNA2 IgG was found in the CSF of 8/21 (38 %) patients and in the serum of 4/96 (4.2 %) healthy blood donors. KCNA2 autoantibodies bound to characteristic anatomical areas in the cerebellum and hippocampus of mammalian brain and juxtaparanodal regions of peripheral nerves but reacted exclusively with intracellular epitopes. A subset of four KCNA2 autoantibody-positive patients responded markedly to immunotherapy alongside with conversion to seronegativity, in particular those presenting an autoimmune encephalitis phenotype and receiving early immunotherapy. An available brain biopsy showed strong immune cell invasion. KCNA2 autoantibodies occurred in less than 10 % in association with an underlying tumor. CONCLUSION: Our data suggest that KCNA2 autoimmunity is clinically heterogeneous. Future studies should determine whether KCNA2 autoantibodies are directly pathogenic or develop secondarily. Early immunotherapy should be considered, in particular if autoantibodies occur in CSF or if clinical or diagnostic findings suggest ongoing inflammation. Suspicious clinical phenotypes include autoimmune encephalitis, atypical dementia, new-onset epilepsy and unexplained epileptic seizures.


Subject(s)
Autoimmune Diseases of the Nervous System , Autoimmunity , Encephalitis , Hashimoto Disease , Animals , Humans , Male , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Female , Retrospective Studies , Autoantibodies , Seizures , Mammals , Kv1.2 Potassium Channel
2.
Psychol Med ; 51(3): 511-520, 2021 02.
Article in English | MEDLINE | ID: mdl-31818339

ABSTRACT

BACKGROUND: Transcutaneous vagus nerve stimulation (tVNS) is a promising therapeutic option for major depressive disorder (MDD) in adults. Alternative third-line treatments for MDD in adolescents are scarce. Here we aimed to assess the effects of acute tVNS on emotion recognition in adolescents with MDD. METHODS: Adolescents (14-17 years) with MDD (n = 33) and non-depressed controls (n = 30) received tVNS or sham-stimulation in a cross-sectional, case-control, within-subject cross-randomized controlled trial, while performing different tasks assessing emotion recognition. Correct responses, response times, and errors of omission and commission on three different computerized emotion recognition tasks were assessed as main outcomes. Simultaneous recordings of electrocardiography and electro dermal activity, as well as sampling of saliva for the determination of α-amylase, were used to quantify the effects on autonomic nervous system function. RESULTS: tVNS had no effect on the recognition of gradually or static expressed emotions but altered response inhibition on the emotional Go/NoGo-task. Specifically, tVNS increased the likelihood of omitting a response toward sad target-stimuli in adolescents with MDD, while decreasing errors (independent of the target emotion) in controls. Effects of acute tVNS on autonomic nervous system function were found in non-depressed controls only. CONCLUSIONS: Acute tVNS alters the recognition of briefly presented facial expressions of negative valence in adolescents with MDD while generally increasing emotion recognition in controls. tVNS seems to specifically alter early visual processing of stimuli of negative emotional valence in MDD. These findings suggest a potential therapeutic benefit of tVNS in adolescent MDD that requires further evaluation within clinical trials.


Subject(s)
Depressive Disorder, Major/therapy , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation/methods , Vagus Nerve/physiopathology , Adolescent , Case-Control Studies , Cross-Sectional Studies , Emotions , Facial Expression , Female , Humans , Linear Models , Male , Recognition, Psychology , Saliva/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...