Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Biotechniques ; 75(2): 47-55, 2023 08.
Article in English | MEDLINE | ID: mdl-37551834

ABSTRACT

High-throughput total nucleic acid (TNA) purification methods based on solid-phase reversible immobilization (SPRI) beads produce TNA suitable for both genomic and transcriptomic applications. Even so, small RNA species, including miRNA, bind weakly to SPRI beads under standard TNA purification conditions, necessitating a separate workflow using column-based methods that are difficult to automate. Here, an SPRI-based high-throughput TNA purification protocol that recovers DNA, RNA and small RNA, called GSC-modified RLT+ Aline bead-based protocol (GRAB-ALL), which incorporates modifications to enhance small RNA recovery is presented. GRAB-ALL was benchmarked against existing nucleic acid purification workflows and GRAB-ALL efficiently purifies TNA, including small RNA, for next-generation sequencing applications in a plate-based format suitable for automated high-throughput sample preparation.


Subject(s)
DNA , RNA , RNA/genetics , DNA/genetics , High-Throughput Nucleotide Sequencing/methods
2.
J Virol Methods ; 299: 114339, 2022 01.
Article in English | MEDLINE | ID: mdl-34687784

ABSTRACT

The COVID-19 pandemic has highlighted the need for generic reagents and flexible systems in diagnostic testing. Magnetic bead-based nucleic acid extraction protocols using 96-well plates on open liquid handlers are readily amenable to meet this need. Here, one such approach is rigorously optimized to minimize cross-well contamination while maintaining sensitivity.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19 Testing , Humans , Indicators and Reagents , Magnetic Phenomena , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
3.
Front Genet ; 12: 665888, 2021.
Article in English | MEDLINE | ID: mdl-34149808

ABSTRACT

RNA sequencing (RNAseq) has been widely used to generate bulk gene expression measurements collected from pools of cells. Only relatively recently have single-cell RNAseq (scRNAseq) methods provided opportunities for gene expression analyses at the single-cell level, allowing researchers to study heterogeneous mixtures of cells at unprecedented resolution. Tumors tend to be composed of heterogeneous cellular mixtures and are frequently the subjects of such analyses. Extensive method developments have led to several protocols for scRNAseq but, owing to the small amounts of RNA in single cells, technical constraints have required compromises. For example, the majority of scRNAseq methods are limited to sequencing only the 3' or 5' termini of transcripts. Other protocols that facilitate full-length transcript profiling tend to capture only polyadenylated mRNAs and are generally limited to processing only 96 cells at a time. Here, we address these limitations and present a novel protocol that allows for the high-throughput sequencing of full-length, total RNA at single-cell resolution. We demonstrate that our method produced strand-specific sequencing data for both polyadenylated and non-polyadenylated transcripts, enabled the profiling of transcript regions beyond only transcript termini, and yielded data rich enough to allow identification of cell types from heterogeneous biological samples.

4.
J Pathol ; 253(2): 225-233, 2021 02.
Article in English | MEDLINE | ID: mdl-33135777

ABSTRACT

The practical application of genome-scale technologies to precision oncology research requires flexible tissue processing strategies that can be used to differentially select both tumour and normal cell populations from formalin-fixed, paraffin-embedded tissues. As tumour sequencing scales towards clinical implementation, practical difficulties in scheduling and obtaining fresh tissue biopsies at scale, including blood samples as surrogates for matched 'normal' DNA, have focused attention on the use of formalin-preserved clinical samples collected routinely for diagnostic purposes. In practice, such samples often contain both tumour and normal cells which, if correctly partitioned, could be used to profile both tumour and normal genomes, thus identifying somatic alterations. Here we report a semi-automated method for laser microdissecting entire slide-mounted tissue sections to enrich for cells of interest with sufficient yield for whole genome and transcriptome sequencing. Using this method, we demonstrated enrichment of tumour material from mixed tumour-normal samples by up to 67%. Leveraging new methods that allow for the extraction of high-quality nucleic acids from small amounts of formalin-fixed tissues, we further showed that the method was successful in yielding sequence data of sufficient quality for use in BC Cancer's Personalized OncoGenomics (POG) program. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Laser Capture Microdissection , Neoplasms/pathology , Precision Medicine , Animals , Formaldehyde , Humans , Liver/pathology , Mice , Mice, Inbred C57BL , Tissue Fixation
5.
PLoS One ; 14(10): e0224578, 2019.
Article in English | MEDLINE | ID: mdl-31671154

ABSTRACT

Next generation RNA-sequencing (RNA-seq) is a flexible approach that can be applied to a range of applications including global quantification of transcript expression, the characterization of RNA structure such as splicing patterns and profiling of expressed mutations. Many RNA-seq protocols require up to microgram levels of total RNA input amounts to generate high quality data, and thus remain impractical for the limited starting material amounts typically obtained from rare cell populations, such as those from early developmental stages or from laser micro-dissected clinical samples. Here, we present an assessment of the contemporary ribosomal RNA depletion-based protocols, and identify those that are suitable for inputs as low as 1-10 ng of intact total RNA and 100-500 ng of partially degraded RNA from formalin-fixed paraffin-embedded tissues.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , RNA, Ribosomal/genetics , Sequence Analysis, RNA/methods , Animals , Base Sequence/genetics , Gene Expression Profiling/methods , Humans , Mammals/genetics , RNA/genetics , RNA, Messenger/genetics , Tissue Fixation/methods , Transcriptome/genetics
6.
Sci Rep ; 9(1): 12744, 2019 09 04.
Article in English | MEDLINE | ID: mdl-31484940

ABSTRACT

Crystalline materials exhibit long-range ordered lattice unit, within which resides nonperiodic structural features called defects. These crystallographic defects play a vital role in determining the physical and mechanical properties of a wide range of material systems. While computer vision has demonstrated success in recognizing feature patterns in images with well-defined contrast, automated identification of nanometer scale crystallographic defects in electron micrographs governed by complex contrast mechanisms is still a challenging task. Here, building upon an advanced defect imaging mode that offers high feature clarity, we introduce DefectSegNet - a new convolutional neural network (CNN) architecture that performs semantic segmentation of three common crystallographic defects in structural alloys: dislocation lines, precipitates and voids. Results from supervised training on a small set of high-quality defect images of steels show high pixel-wise accuracy across all three types of defects: 91.60 ± 1.77% on dislocations, 93.39 ± 1.00% on precipitates, and 98.85 ± 0.56% on voids. We discuss the sources of uncertainties in CNN prediction and the training data in terms of feature density, representation and homogeneity and their effects on deep learning performance. Further defect quantification using DefectSegNet prediction outperforms human expert average, presenting a promising new workflow for fast and statistically meaningful quantification of materials defects.

7.
Biotechniques ; 66(2): 85-92, 2019 02.
Article in English | MEDLINE | ID: mdl-30744412

ABSTRACT

The analysis of cell-free circulating tumor DNA (ctDNA) is potentially a less invasive, more dynamic assessment of cancer progression and treatment response than characterizing solid tumor biopsies. Standard isolation methods require separation of plasma by centrifugation, a time-consuming step that complicates automation. To address these limitations, we present an automatable magnetic bead-based ctDNA isolation method that eliminates centrifugation to purify ctDNA directly from peripheral blood (PB). To develop and test our method, ctDNA from cancer patients was purified from PB and plasma. We found that allelic fractions of somatic single-nucleotide variants from target gene capture libraries were comparable, indicating that the PB ctDNA purification method may be a suitable replacement for the plasma-based protocols currently in use.


Subject(s)
Cell-Free Nucleic Acids/blood , Circulating Tumor DNA/blood , High-Throughput Screening Assays/methods , Neoplasms/blood , Biomarkers, Tumor/blood , Biomarkers, Tumor/isolation & purification , Cell-Free Nucleic Acids/isolation & purification , Circulating Tumor DNA/isolation & purification , High-Throughput Nucleotide Sequencing , Humans , Mutation , Neoplasms/genetics
8.
Nucleic Acids Res ; 47(2): e12, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30418619

ABSTRACT

Tissues used in pathology laboratories are typically stored in the form of formalin-fixed, paraffin-embedded (FFPE) samples. One important consideration in repurposing FFPE material for next generation sequencing (NGS) analysis is the sequencing artifacts that can arise from the significant damage to nucleic acids due to treatment with formalin, storage at room temperature and extraction. One such class of artifacts consists of chimeric reads that appear to be derived from non-contiguous portions of the genome. Here, we show that a major proportion of such chimeric reads align to both the 'Watson' and 'Crick' strands of the reference genome. We refer to these as strand-split artifact reads (SSARs). This study provides a conceptual framework for the mechanistic basis of the genesis of SSARs and other chimeric artifacts along with supporting experimental evidence, which have led to approaches to reduce the levels of such artifacts. We demonstrate that one of these approaches, involving S1 nuclease-mediated removal of single-stranded fragments and overhangs, also reduces sequence bias, base error rates, and false positive detection of copy number and single nucleotide variants. Finally, we describe an analytical approach for quantifying SSARs from NGS data.


Subject(s)
Artifacts , Fixatives , Formaldehyde , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Animals , Genomic Library , Genomics , Hot Temperature , Mice, Inbred C57BL , Paraffin Embedding
9.
BMC Genomics ; 18(1): 515, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28679365

ABSTRACT

BACKGROUND: RNA-Sequencing (RNA-seq) is now commonly used to reveal quantitative spatiotemporal snapshots of the transcriptome, the structures of transcripts (splice variants and fusions) and landscapes of expressed mutations. However, standard approaches for library construction typically require relatively high amounts of input RNA, are labor intensive, and are time consuming. METHODS: Here, we report the outcome of a systematic effort to optimize and streamline steps in strand-specific RNA-seq library construction. RESULTS: This work has resulted in the identification of an optimized messenger RNA isolation protocol, a potent reverse transcriptase for cDNA synthesis, and an efficient chemistry and a simplified formulation of library construction reagents. We also present an optimization of bead-based purification and size selection designed to maximize the recovery of cDNA fragments. CONCLUSIONS: These developments have allowed us to assemble a rapid high throughput pipeline that produces high quality data from amounts of total RNA as low as 25 ng. While the focus of this study is on RNA-seq sample preparation, some of these developments are also relevant to other next-generation sequencing library types.


Subject(s)
Gene Library , RNA, Messenger , Sequence Analysis, RNA/methods , Specimen Handling/standards , HL-60 Cells , Humans
10.
PLoS One ; 12(6): e0178706, 2017.
Article in English | MEDLINE | ID: mdl-28570594

ABSTRACT

Curation and storage of formalin-fixed, paraffin-embedded (FFPE) samples are standard procedures in hospital pathology laboratories around the world. Many thousands of such samples exist and could be used for next generation sequencing analysis. Retrospective analyses of such samples are important for identifying molecular correlates of carcinogenesis, treatment history and disease outcomes. Two major hurdles in using FFPE material for sequencing are the damaged nature of the nucleic acids and the labor-intensive nature of nucleic acid purification. These limitations and a number of other issues that span multiple steps from nucleic acid purification to library construction are addressed here. We optimized and automated a 96-well magnetic bead-based extraction protocol that can be scaled to large cohorts and is compatible with automation. Using sets of 32 and 91 individual FFPE samples respectively, we generated libraries from 100 ng of total RNA and DNA starting amounts with 95-100% success rate. The use of the resulting RNA in micro-RNA sequencing was also demonstrated. In addition to offering the potential of scalability and rapid throughput, the yield obtained with lower input requirements makes these methods applicable to clinical samples where tissue abundance is limiting.


Subject(s)
Automation , DNA/isolation & purification , Formaldehyde/chemistry , High-Throughput Nucleotide Sequencing , Paraffin Embedding , RNA/isolation & purification , Tissue Fixation/methods , DNA/genetics , RNA/genetics
11.
Clin Cancer Res ; 22(17): 4466-77, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27140928

ABSTRACT

PURPOSE: Persistent androgen receptor (AR) transcriptional activity is clinically evident in castration-resistant prostate cancer (CRPC). Therefore, AR remains as a viable therapeutic target for CRPC. All current hormonal therapies target the C-terminus ligand-binding domain (LBD) of AR. By using EPI to target AR activation function-1 (AF-1), in the N-terminal domain that is essential for AR transactivation, we evaluate the ability of EPI to overcome several clinically relevant AR-related mechanisms of resistance. EXPERIMENTAL DESIGN: To study the effect of EPI on AR transcriptional activity against overexpressed coactivators, such as SRC1-3 and p300, luciferase reporter assays were performed using LNCaP cells. AR-negative COS-1 cells were employed for reporter assays to examine whether the length of polyglutamine tract affects inhibition by EPI. The effect of EPI on constitutively active AR splice variants was studied in LNCaP95 cells, which express AR-V7 variant. To evaluate the effect of EPI on the proliferation of LNCaP95 cells, we performed in vitro BrdUrd incorporation assay and in vivo studies using xenografts in mice. RESULTS: EPI effectively overcame several molecular alterations underlying aberrant AR activity, including overexpressed coactivators, AR gain-of-function mutations, and constitutively active AR-V7. EPI inhibited AR transcriptional activity regardless of the length of polyglutamine tract. Importantly, EPI significantly inhibited the in vitro and in vivo proliferation of LNCaP95 prostate cancer cells, which are androgen independent and enzalutamide resistant. CONCLUSIONS: These findings support EPI as a promising therapeutic agent to treat CRPC, particularly against tumors driven by constitutively active AR splice variants that are resistant to LBD-targeting drugs. Clin Cancer Res; 22(17); 4466-77. ©2016 AACRSee related commentary by Sharp et al., p. 4280.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Benzhydryl Compounds/pharmacology , Chlorohydrins/pharmacology , Drug Resistance, Neoplasm , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Animals , Apoptosis/drug effects , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Mutation , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Protein Binding , RNA Splicing , Receptors, Androgen/genetics , Signal Transduction/drug effects , Transcriptional Activation , Xenograft Model Antitumor Assays
12.
J Clin Invest ; 123(7): 2948-60, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23722902

ABSTRACT

Hormone therapies for advanced prostate cancer target the androgen receptor (AR) ligand-binding domain (LBD), but these ultimately fail and the disease progresses to lethal castration-resistant prostate cancer (CRPC). The mechanisms that drive CRPC are incompletely understood, but may involve constitutively active AR splice variants that lack the LBD. The AR N-terminal domain (NTD) is essential for AR activity, but targeting this domain with small-molecule inhibitors is complicated by its intrinsic disorder. Here we investigated EPI-001, a small-molecule antagonist of AR NTD that inhibits protein-protein interactions necessary for AR transcriptional activity. We found that EPI analogs covalently bound the NTD to block transcriptional activity of AR and its splice variants and reduced the growth of CRPC xenografts. These findings suggest that the development of small-molecule inhibitors that bind covalently to intrinsically disordered proteins is a promising strategy for development of specific and effective anticancer agents.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Benzhydryl Compounds/pharmacology , Chlorohydrins/pharmacology , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/chemistry , Animals , Antineoplastic Agents, Hormonal/chemistry , Benzhydryl Compounds/chemistry , COS Cells , Cell Proliferation/drug effects , Chlorocebus aethiops , Chlorohydrins/chemistry , Click Chemistry , Gene Expression , Gene Expression Regulation, Neoplastic/drug effects , Genes, Reporter , Humans , Luciferases/biosynthesis , Luciferases/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , Orchiectomy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Protein Structure, Tertiary , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Stereoisomerism , Transcriptional Activation/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
13.
mBio ; 3(6)2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23149485

ABSTRACT

UNLABELLED: The Toxoplasma gondii SRS gene superfamily is structurally related to SRS29B (formerly SAG1), a surface adhesin that binds host cells and stimulates host immunity. Comparative genomic analyses of three Toxoplasma strains identified 182 SRS genes distributed across 14 chromosomes at 57 genomic loci. Eight distinct SRS subfamilies were resolved. A core 69 functional gene orthologs were identified, and strain-specific expansions and pseudogenization were common. Gene expression profiling demonstrated differential expression of SRS genes in a developmental-stage- and strain-specific fashion and identified nine SRS genes as priority targets for gene deletion among the tissue-encysting coccidia. A Δsag1 sag2A mutant was significantly attenuated in murine acute virulence and showed upregulated SRS29C (formerly SRS2) expression. Transgenic overexpression of SRS29C in the virulent RH parent was similarly attenuated. Together, these findings reveal SRS29C to be an important regulator of acute virulence in mice and demonstrate the power of integrated genomic analysis to guide experimental investigations. IMPORTANCE: Parasitic species employ large gene families to subvert host immunity to enable pathogen colonization and cause disease. Toxoplasma gondii contains a large surface coat gene superfamily that encodes adhesins and virulence factors that facilitate infection in susceptible hosts. We generated an integrated bioinformatic resource to predict which genes from within this 182-gene superfamily of adhesin-encoding genes play an essential role in the host-pathogen interaction. Targeted gene deletion experiments with predicted candidate surface antigens identified SRS29C as an important negative regulator of acute virulence in murine models of Toxoplasma infection. Our integrated computational and experimental approach provides a comprehensive framework, or road map, for the assembly and discovery of additional key pathogenesis genes contained within other large surface coat gene superfamilies from a broad array of eukaryotic pathogens.


Subject(s)
Computational Biology/methods , Protozoan Proteins/genetics , Sequence Deletion , Toxoplasma/genetics , Toxoplasma/pathogenicity , Transcription Factors/genetics , Virulence Factors/biosynthesis , Animals , Disease Models, Animal , Female , Gene Deletion , Gene Expression Profiling , Host-Pathogen Interactions , Mice , Toxoplasmosis, Animal/parasitology , Virulence
14.
PLoS One ; 6(9): e24197, 2011.
Article in English | MEDLINE | ID: mdl-21909421

ABSTRACT

Androgen receptor (AR) is a member of the nuclear receptor family of transcription factors. Upon binding to androgens, AR becomes transcriptionally active to regulate the expression of target genes that harbor androgen response elements (AREs) in their promoters and/or enhancers. AR is essential for the growth and survival of prostate cancer cells and is therefore a target for current and next-generation therapeutic modalities against prostate cancer. Pathophysiologically relevant protein-protein interaction networks involving AR are, however, poorly understood. In this study, we identified the protein FUsed/Translocated in LipoSarcoma (FUS/TLS) as an AR-interacting protein by co-immunoprecipitation of endogenous proteins in LNCaP human prostate cancer cells. The hormonal response of FUS expression in LNCaP cells was shown to resemble that of other AR co-activators. FUS displayed a strong intrinsic transactivation capacity in prostate cancer cells when tethered to basal promoters using the GAL4 system. Chromatin immunoprecipitation experiments showed that FUS was recruited to ARE III of the enhancer region of the PSA gene. Data from ectopic overexpression and "knock-down" approaches demonstrated that AR transcriptional activity was enhanced by FUS. Depletion of FUS reduced androgen-dependent proliferation of LNCaP cells. Thus, FUS is a novel co-activator of AR in prostate cancer cells.


Subject(s)
Prostatic Neoplasms/metabolism , RNA-Binding Protein FUS/metabolism , Receptors, Androgen/metabolism , Trans-Activators/metabolism , Amino Acid Sequence , Androgens/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mass Spectrometry , Molecular Sequence Data , Multiprotein Complexes/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Transport/drug effects , RNA-Binding Protein FUS/chemistry , Receptors, Androgen/genetics , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Trans-Activators/chemistry , Transcriptional Activation/drug effects
15.
Cell Mol Life Sci ; 68(24): 3971-81, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21748469

ABSTRACT

Androgen receptor (AR) is a transcription factor that becomes active upon binding to androgens via its ligand-binding domain (LBD) or in response to signaling cascades initiated by growth factors and cytokines. The activity of AR requires regions within the N-terminal domain (NTD) in a manner that is distinct from the activation of related steroid hormone receptors. Unequivocal evidence has been amassed to consider that the AR axis is the most critical pathway for the progression of prostate cancer. Qualitatively distinct insights into AR pathobiology have been garnered including that AR-regulated gene expression is stage-specifically modulated during disease progression and that the ligand requirement for AR activity could be rendered dispensable because of the expression of constitutively active AR splice variants that are devoid of LBD. The recent appreciation of the clinical challenge that stems from non-gonadal androgens that are not inhibited by traditional hormonal therapies has been tangibly translated into the development of more potent drugs that can potentially lead towards achieving an androgen-free environment. The pre-clinical evidence that proves that AR NTD is a druggable target also forecasts a further paradigm shift in the management of advanced prostate cancer. These advancements together with the identification of more robust AR antagonists and their promising clinical outcome have renewed the hope that targeting the AR pathway remains a sound strategy in the clinical management of prostate cancer. Here, we address these developments with a greater emphasis on the rapidly growing literature on AR splice variants.


Subject(s)
Alternative Splicing , Prostatic Neoplasms/genetics , Receptors, Androgen/physiology , Antineoplastic Agents/therapeutic use , Gene Expression Regulation, Neoplastic , Humans , Male , Models, Biological , Prostatic Neoplasms/drug therapy , Protein Isoforms/analysis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/physiology , Receptors, Androgen/analysis , Receptors, Androgen/chemistry , Receptors, Androgen/genetics
16.
Cancer Cell ; 17(6): 535-46, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20541699

ABSTRACT

Castration-recurrent prostate cancer (CRPC) is suspected to depend on androgen receptor (AR). The AF-1 region in the amino-terminal domain (NTD) of AR contains most, if not all, of the transcriptional activity. Here we identify EPI-001, a small molecule that blocked transactivation of the NTD and was specific for inhibition of AR without attenuating transcriptional activities of related steroid receptors. EPI-001 interacted with the AF-1 region, inhibited protein-protein interactions with AR, and reduced AR interaction with androgen-response elements on target genes. Importantly, EPI-001 blocked androgen-induced proliferation and caused cytoreduction of CRPC in xenografts dependent on AR for growth and survival without causing toxicity.


Subject(s)
Androgen Receptor Antagonists , Antineoplastic Agents, Hormonal/therapeutic use , Benzhydryl Compounds/therapeutic use , Castration , Chlorohydrins/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Prostatic Neoplasms/drug therapy , Androgens/pharmacology , Animals , Antineoplastic Agents, Hormonal/adverse effects , Antineoplastic Agents, Hormonal/pharmacology , Apoptosis/drug effects , Benzhydryl Compounds/adverse effects , Benzhydryl Compounds/pharmacology , CREB-Binding Protein/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorohydrins/adverse effects , Chlorohydrins/pharmacology , DNA/genetics , DNA/metabolism , Gene Expression/drug effects , Humans , Ligands , Male , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Structure , Neoplasm Recurrence, Local/pathology , Prostate/anatomy & histology , Prostate/drug effects , Prostate/pathology , Prostate-Specific Antigen/blood , Prostate-Specific Antigen/genetics , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Protein Binding/drug effects , Protein Binding/genetics , Protein Conformation/drug effects , Protein Interaction Domains and Motifs/drug effects , Protein Multimerization/drug effects , Receptors, Androgen/metabolism , Receptors, Steroid/drug effects , Response Elements/genetics , Serine Endopeptidases/genetics , Transcriptional Activation/drug effects , Xenograft Model Antitumor Assays
17.
Mol Biochem Parasitol ; 172(2): 99-106, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20363263

ABSTRACT

Capping of mRNAs is strictly coupled to RNA polymerase II transcription and there is evidence, mainly from metazoans, that other steps in pre-mRNA processing show a similar linkage. In trypanosomes, however, the mRNA cap is supplied by a trans spliced leader sequence. Thus pre-mRNAs transcribed by RNA Polymerase I are capped by trans splicing, and translation-competent transgenic mRNAs can be produced by RNA Polymerase I and T7 RNA polymerase so long as the primary transcript has a splice acceptor signal. We quantified the efficiency of processing of trypanosome pre-mRNAs produced from a plasmid integrated either at the tubulin locus, or in an rRNA spacer, and transcribed by RNA polymerase II, RNA polymerase I or T7 RNA polymerase. The processing efficiencies were similar for primary transcripts from the tubulin locus, produced by RNA polymerase II, and for RNA from an rRNA spacer, transcribed by RNA polymerase I. Primary transcripts produced by T7 RNA polymerase from the tubulin locus were processed almost as well. There was therefore no evidence for recruitment of the 3'-splicing apparatus by the RNA polymerase. Abundant transcripts transcribed from the rRNA locus by T7 RNA polymerase were somewhat less efficiently processed.


Subject(s)
Phosphoglycerate Kinase/genetics , Protozoan Proteins/genetics , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , RNA, Protozoan/metabolism , Trans-Splicing , Trypanosoma brucei brucei/metabolism , Transcription, Genetic , Trypanosoma brucei brucei/enzymology
18.
Am J Pathol ; 175(6): 2264-76, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19893039

ABSTRACT

Levels of 27 transcripts were investigated as potential novel markers for prostate cancer, including genes encoding plasma membrane proteins (ADAM2, ELOVL5, MARCKSL1, RAMP1, TMEM30A, and TMEM66); secreted proteins (SPON2, TMEM30A, TMEM66, and truncated TMEFF2 (called POP4)); intracellular proteins (CAMK2N1, DHCR24, GLO1, NGFRAP1, PGK1, PSMA7, SBDS, and YWHAQ); and noncoding transcripts (POP1 (100 kb) from mRNA AK000023), POP2 (4 kb from mRNA AL832227), POP3 (50 kb from EST CFI40309), POP5 (intron of NCAM2, accession DO668384), POP6 (intron of FHIT), POP7 (intron of TNFAIP8), POP8 (intron of EFNA5), POP9 (intron of DSTN), POP10 (intron of ADAM2, accession DO668396), POP11 (87kb from EST BG194644), and POP12 (intron of EST BQ226050)). Expression of POP3 was prostate specific, whereas ADAM2, POP1, POP4, POP10, ELOVL5, RAMP1, and SPON2 had limited tissue expression. ELOVL5, MARCKSL1, NGFRAP1, PGK1, POP2, POP5, POP8, PSMA7, RAMP1, and SPON2 were significantly differentially expressed between laser microdissected malignant versus benign clinical samples of prostate tissue. PGK1, POP2, and POP12 correlated to clinical parameters. Levels of CAMK2N1, GLO1, SDBS, and TMEM30A transcripts tended to be increased in primary prostate cancer from patients who later had biochemical failure. Expression of GLO1, DHCR24, NGFRAP1, KLK3, and RAMP1 were significantly decreased in metastatic castration-recurrent disease compared with androgen-dependent primary prostate cancer. These novel potential biomarkers may therefore be useful in the diagnosis/prognosis of prostate cancer.


Subject(s)
Biomarkers, Tumor/analysis , Gene Expression Profiling , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Aged , Blotting, Western , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Lasers , Male , Microdissection , Middle Aged , Neoplasm Staging , Prognosis , Prostate-Specific Antigen/blood , Prostatic Neoplasms/metabolism , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction
19.
Cancer Res ; 69(8): 3433-42, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19351846

ABSTRACT

Identification of gene expression signatures associated with metastases provides a tool to discern mechanisms and potential therapeutic targets and may lead toward a molecular classification system in pathology. Prostate cancer (CaP) frequently metastasizes to the bone to form osteoblastic lesions. Correlative clinical data and in vitro evidence have led to the hypothesis that osteoblast-derived factors promote hormonal progression of CaP cells. Here, the gene expression signature of CaP exposed to osteoblast-derived factors was identified. This signature included known androgen-regulated genes, oncogenes, tumor suppressors, and genes whose products are involved in apoptosis and cell cycle. A comparative functional genomic approach involved the application of this responsive gene expression signature to clinical samples of human CaP, melanomas, and oral cancers. Cluster analysis revealed that this gene expression signature had specificity for CaP and could resolve clinical specimens according to stage (benign, localized, and metastatic) and androgen sensitivity with an accuracy of 100% and 80%, respectively. Together, these results suggest that factors derived from osteoblasts induce a more advanced phenotype of CaP and promotes hormonal progression.


Subject(s)
Bone Neoplasms/genetics , Neoplasms, Hormone-Dependent/genetics , Osteoblasts/metabolism , Prostatic Neoplasms/genetics , Animals , Bone Neoplasms/secondary , Gene Expression Profiling , Humans , Male , Mice , Mice, Nude , Neoplasms, Hormone-Dependent/metabolism , Neoplasms, Hormone-Dependent/pathology , Osteoblasts/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Tissue Extracts/pharmacology , Transplantation, Heterologous
20.
Nucleic Acids Res ; 36(5): 1634-44, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18250085

ABSTRACT

The life cycle of Leishmania alternates between developmental forms residing within the insect vector (e.g. promastigotes) and the mammalian host (amastigotes). In Leishmania nearly all control of gene expression is post-transcriptional and involves sequences in the 3'-untranslated regions (3'UTRs) of mRNAs. Very little is known as to how these cis-elements regulate RNA turnover and translation rates in trypanosomatids and nothing is known about mRNA degradation mechanisms in Leishmania in particular. Here, we use the amastin mRNA-an amastigote-specific transcript-as a model and show that a approximately 100 nt U-rich element (URE) within its 3'UTR significantly accounts for developmental regulation. RNase-H-RNA blot analysis revealed that a major part of the rapid promastigote-specific degradation of the amastin mRNA is not initiated by deadenylation. This is in contrast to the amastin mRNA in amastigotes and to reporter RNAs lacking the URE, which, in common with most eukaryotic mRNAs studied to-date, are deadenylated before being degraded. Moreover, our analysis did not reveal a role for decapping in the stage-specific degradation of the amastin mRNA. Overall, these results suggest that degradation of the amastin mRNA of Leishmania is likely to be bi-phasic, the first phase being stage-specific and dependent on an unusual URE-mediated pathway of mRNA degradation.


Subject(s)
Gene Expression Regulation, Developmental , Leishmania infantum/growth & development , Leishmania infantum/genetics , RNA Stability , RNA, Messenger/metabolism , 3' Untranslated Regions/chemistry , Animals , Antigens, Protozoan/genetics , Leishmania infantum/metabolism , Poly A/metabolism , RNA Caps/metabolism , Uridine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL