Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 9(2): e0100123, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38259168

ABSTRACT

Understanding the dynamics of biological systems in evolving environments is a challenge due to their scale and complexity. Here, we present a computational framework for the timescale decomposition of biochemical reaction networks to distill essential patterns from their intricate dynamics. This approach identifies timescale hierarchies, concentration pools, and coherent structures from time-series data, providing a system-level description of reaction networks at physiologically important timescales. We apply this technique to kinetic models of hypothetical and biological pathways, validating it by reproducing analytically characterized or previously known concentration pools of these pathways. Moreover, by analyzing the timescale hierarchy of the glycolytic pathway, we elucidate the connections between the stoichiometric and dissipative structures of reaction networks and the temporal organization of coherent structures. Specifically, we show that glycolysis is a cofactor-driven pathway, the slowest dynamics of which are described by a balance between high-energy phosphate bond and redox trafficking. Overall, this approach provides more biologically interpretable characterizations of network dynamics than large-scale kinetic models, thus facilitating model reduction and personalized medicine applications. IMPORTANCE Complex interactions within interconnected biochemical reaction networks enable cellular responses to a wide range of unpredictable environmental perturbations. Understanding how biological functions arise from these intricate interactions has been a long-standing problem in biology. Here, we introduce a computational approach to dissect complex biological systems' dynamics in evolving environments. This approach characterizes the timescale hierarchies of complex reaction networks, offering a system-level understanding at physiologically relevant timescales. Analyzing various hypothetical and biological pathways, we show how stoichiometric properties shape the way energy is dissipated throughout reaction networks. Notably, we establish that glycolysis operates as a cofactor-driven pathway, where the slowest dynamics are governed by a balance between high-energy phosphate bonds and redox trafficking. This approach enhances our understanding of network dynamics and facilitates the development of reduced-order kinetic models with biologically interpretable components.


Subject(s)
Cell Physiological Phenomena , Glycolysis , Kinetics , Phosphates
2.
bioRxiv ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38260479

ABSTRACT

Mature red blood cells (RBCs) lack mitochondria, and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo and during storage in vitro in the blood bank. Here we identify an association between blood donor age, sex, ethnicity and end-of-storage levels of glycolytic metabolites in 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study. Associations were also observed to ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (which we detected in mature RBCs), hexokinase 1, and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice, and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP levels, breakdown, and deamination into hypoxanthine were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions. Highlights: Blood donor age and sex affect glycolysis in stored RBCs from 13,029 volunteers;Ancestry, genetic polymorphisms in PFKP, HK1, CD38/BST1 influence RBC glycolysis;RBC PFKP boosts glycolytic fluxes when ATP is low, such as in stored RBCs;ATP and hypoxanthine are biomarkers of hemolysis in vitro and in vivo.

3.
Metabolites ; 13(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37999241

ABSTRACT

Red blood cells (RBCs) are abundant (more than 80% of the total cells in the human body), yet relatively simple, as they lack nuclei and organelles, including mitochondria. Since the earliest days of biochemistry, the accessibility of blood and RBCs made them an ideal matrix for the characterization of metabolism. Because of this, investigations into RBC metabolism are of extreme relevance for research and diagnostic purposes in scientific and clinical endeavors. The relative simplicity of RBCs has made them an eligible model for the development of reconstruction maps of eukaryotic cell metabolism since the early days of systems biology. Computational models hold the potential to deepen knowledge of RBC metabolism, but also and foremost to predict in silico RBC metabolic behaviors in response to environmental stimuli. Here, we review now classic concepts on RBC metabolism, prior work in systems biology of unicellular organisms, and how this work paved the way for the development of reconstruction models of RBC metabolism. Translationally, we discuss how the fields of metabolomics and systems biology have generated evidence to advance our understanding of the RBC storage lesion, a process of decline in storage quality that impacts over a hundred million blood units transfused every year.

4.
bioRxiv ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37662221

ABSTRACT

Understanding the dynamics of biological systems in evolving environments is a challenge due to their scale and complexity. Here, we present a computational framework for timescale decomposition of biochemical reaction networks to distill essential patterns from their intricate dynamics. This approach identifies timescale hierarchies, concentration pools, and coherent structures from time-series data, providing a system-level description of reaction networks at physiologically important timescales. We apply this technique to kinetic models of hypothetical and biological pathways, validating it by reproducing analytically characterized or previously known concentration pools of these pathways. Moreover, by analyzing the timescale hierarchy of the glycolytic pathway, we elucidate the connections between the stoichiometric and dissipative structures of reaction networks and the temporal organization of coherent structures. Specifically, we show that glycolysis is a cofactor driven pathway, the slowest dynamics of which are described by a balance between high-energy phosphate bond and redox trafficking. Overall, this approach provides more biologically interpretable characterizations of network dynamics than large-scale kinetic models, thus facilitating model reduction and personalized medicine applications.

5.
Nucleic Acids Res ; 50(W1): W108-W114, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35524558

ABSTRACT

Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations.


Subject(s)
Computer Simulation , Software , Humans , Bioengineering , Models, Biological , Registries , Research Personnel
6.
PLoS Comput Biol ; 17(1): e1008208, 2021 01.
Article in English | MEDLINE | ID: mdl-33507922

ABSTRACT

Mathematical models of metabolic networks utilize simulation to study system-level mechanisms and functions. Various approaches have been used to model the steady state behavior of metabolic networks using genome-scale reconstructions, but formulating dynamic models from such reconstructions continues to be a key challenge. Here, we present the Mass Action Stoichiometric Simulation Python (MASSpy) package, an open-source computational framework for dynamic modeling of metabolism. MASSpy utilizes mass action kinetics and detailed chemical mechanisms to build dynamic models of complex biological processes. MASSpy adds dynamic modeling tools to the COnstraint-Based Reconstruction and Analysis Python (COBRApy) package to provide an unified framework for constraint-based and kinetic modeling of metabolic networks. MASSpy supports high-performance dynamic simulation through its implementation of libRoadRunner: the Systems Biology Markup Language (SBML) simulation engine. Three examples are provided to demonstrate how to use MASSpy: (1) a validation of the MASSpy modeling tool through dynamic simulation of detailed mechanisms of enzyme regulation; (2) a feature demonstration using a workflow for generating ensemble of kinetic models using Monte Carlo sampling to approximate missing numerical values of parameters and to quantify biological uncertainty, and (3) a case study in which MASSpy is utilized to overcome issues that arise when integrating experimental data with the computation of functional states of detailed biological mechanisms. MASSpy represents a powerful tool to address challenges that arise in dynamic modeling of metabolic networks, both at small and large scales.


Subject(s)
Computer Simulation , Metabolic Networks and Pathways , Models, Biological , Software , Systems Biology/methods , Kinetics
7.
Nat Commun ; 9(1): 5252, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30531987

ABSTRACT

Knowing the catalytic turnover numbers of enzymes is essential for understanding the growth rate, proteome composition, and physiology of organisms, but experimental data on enzyme turnover numbers is sparse and noisy. Here, we demonstrate that machine learning can successfully predict catalytic turnover numbers in Escherichia coli based on integrated data on enzyme biochemistry, protein structure, and network context. We identify a diverse set of features that are consistently predictive for both in vivo and in vitro enzyme turnover rates, revealing novel protein structural correlates of catalytic turnover. We use our predictions to parameterize two mechanistic genome-scale modelling frameworks for proteome-limited metabolism, leading to significantly higher accuracy in the prediction of quantitative proteome data than previous approaches. The presented machine learning models thus provide a valuable tool for understanding metabolism and the proteome at the genome scale, and elucidate structural, biochemical, and network properties that underlie enzyme kinetics.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Machine Learning , Metabolic Networks and Pathways , Algorithms , Biocatalysis , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Kinetics , Models, Biological , Proteome/genetics , Proteome/metabolism
8.
PLoS Comput Biol ; 14(8): e1006356, 2018 08.
Article in English | MEDLINE | ID: mdl-30086174

ABSTRACT

Allosteric regulation has traditionally been described by mathematically-complex allosteric rate laws in the form of ratios of polynomials derived from the application of simplifying kinetic assumptions. Alternatively, an approach that explicitly describes all known ligand-binding events requires no simplifying assumptions while allowing for the computation of enzymatic states. Here, we employ such a modeling approach to examine the "catalytic potential" of an enzyme-an enzyme's capacity to catalyze a biochemical reaction. The catalytic potential is the fundamental result of multiple ligand-binding events that represents a "tug of war" among the various regulators and substrates within the network. This formalism allows for the assessment of interacting allosteric enzymes and development of a network-level understanding of regulation. We first define the catalytic potential and use it to characterize the response of three key kinases (hexokinase, phosphofructokinase, and pyruvate kinase) in human red blood cell glycolysis to perturbations in ATP utilization. Next, we examine the sensitivity of the catalytic potential by using existing personalized models, finding that the catalytic potential allows for the identification of subtle but important differences in how individuals respond to such perturbations. Finally, we explore how the catalytic potential can help to elucidate how enzymes work in tandem to maintain a homeostatic state. Taken together, this work provides an interpretation and visualization of the dynamic interactions and network-level effects of interacting allosteric enzymes.


Subject(s)
Allosteric Regulation/physiology , Glycolysis/physiology , Protein Binding/physiology , Biophysical Phenomena/physiology , Catalysis , Computer Simulation , Hexokinase/metabolism , Hexokinase/pharmacokinetics , Humans , Kinetics , Ligands , Phosphofructokinase-1/metabolism , Phosphofructokinase-1/pharmacokinetics , Pyruvate Kinase/metabolism , Pyruvate Kinase/pharmacokinetics , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...