Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746126

ABSTRACT

Copper (Cu) is an essential trace element required for respiration, neurotransmitter synthesis, oxidative stress response, and transcriptional regulation. Imbalance in Cu homeostasis can lead to several pathological conditions, affecting neuronal, cognitive, and muscular development. Mechanistically, Cu and Cu-binding proteins (Cu-BPs) have an important but underappreciated role in transcription regulation in mammalian cells. In this context, our lab investigates the contributions of novel Cu-BPs in skeletal muscle differentiation using murine primary myoblasts. Through an unbiased synchrotron X-ray fluorescence-mass spectrometry (XRF/MS) metalloproteomic approach, we identified the murine cysteine rich intestinal protein 2 (mCrip2) in a sample that showed enriched Cu signal, which was isolated from differentiating primary myoblasts derived from mouse satellite cells. Immunolocalization analyses showed that mCrip2 is abundant in both nuclear and cytosolic fractions. Thus, we hypothesized that mCrip2 might have differential roles depending on its cellular localization in the skeletal muscle lineage. mCrip2 is a LIM-family protein with 4 conserved Zn 2+ -binding sites. Homology and phylogenetic analyses showed that mammalian Crip2 possesses histidine residues near two of the Zn 2+ -binding sites (CX2C-HX2C) which are potentially implicated in Cu + -binding and competition with Zn 2+ . Biochemical characterization of recombinant human hsCRIP2 revealed a high Cu + -binding affinity for two and four Cu + ions and limited redox potential. Functional characterization using CRISPR/Cas9-mediated deletion of mCrip2 in primary myoblasts did not impact proliferation, but impaired myogenesis by decreasing the expression of differentiation markers, possibly attributed to Cu accumulation. Transcriptome analyses of proliferating and differentiating mCrip2 KO myoblasts showed alterations in mRNA processing, protein translation, ribosome synthesis, and chromatin organization. CUT&RUN analyses showed that mCrip2 associates with a select set of gene promoters, including MyoD1 and metallothioneins , acting as a novel Cu-responsive or Cu-regulating protein. Our work demonstrates novel regulatory functions of mCrip2 that mediate skeletal muscle differentiation, presenting new features of the Cu-network in myoblasts.

2.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659863

ABSTRACT

Nucleosome remodeling complexes and other regulatory factors work in concert to build a chromatin environment that directs the expression of a distinct set of genes in each cell using cis-regulatory elements (CREs), such as promoters and enhancers, that drive transcription of both mRNAs and CRE-associated non-coding RNAs (ncRNAs). Two classes of CRE-associated ncRNAs include upstream antisense RNAs (uaRNAs), which are transcribed divergently from a shared mRNA promoter, and enhancer RNAs (eRNAs), which are transcribed bidirectionally from active enhancers. The complicated network of CRE regulation by nucleosome remodelers remains only partially explored, with a focus on a select, limited number of remodelers. We endeavored to elucidate a remodeler-based regulatory network governing CRE-associated transcription (mRNA, eRNA, and uaRNA) in murine embryonic stem (ES) cells to test the hypothesis that many SNF2-family nucleosome remodelers collaborate to regulate the coding and non-coding transcriptome via alteration of underlying nucleosome architecture. Using depletion followed by transient transcriptome sequencing (TT-seq), we identified thousands of misregulated mRNAs and CRE-associated ncRNAs across the remodelers examined, identifying novel contributions by understudied remodelers in the regulation of coding and noncoding transcription. Our findings suggest that mRNA and eRNA transcription are coordinately co-regulated, while mRNA and uaRNAs sharing a common promoter are independently regulated. Subsequent mechanistic studies suggest that while remodelers SRCAP and CHD8 modulate transcription through classical mechanisms such as transcription factors and histone variants, a broad set of remodelers including SMARCAL1 indirectly contribute to transcriptional regulation through maintenance of genomic stability and proper Integrator complex localization. This study systematically examines the contribution of SNF2-remodelers to the CRE-associated transcriptome, identifying at least two classes for remodeler action.

3.
Genome Biol ; 25(1): 11, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191487

ABSTRACT

BACKGROUND: Transcription factors bind DNA in specific sequence contexts. In addition to distinguishing one nucleobase from another, some transcription factors can distinguish between unmodified and modified bases. Current models of transcription factor binding tend not to take DNA modifications into account, while the recent few that do often have limitations. This makes a comprehensive and accurate profiling of transcription factor affinities difficult. RESULTS: Here, we develop methods to identify transcription factor binding sites in modified DNA. Our models expand the standard A/C/G/T DNA alphabet to include cytosine modifications. We develop Cytomod to create modified genomic sequences and we also enhance the MEME Suite, adding the capacity to handle custom alphabets. We adapt the well-established position weight matrix (PWM) model of transcription factor binding affinity to this expanded DNA alphabet. Using these methods, we identify modification-sensitive transcription factor binding motifs. We confirm established binding preferences, such as the preference of ZFP57 and C/EBPß for methylated motifs and the preference of c-Myc for unmethylated E-box motifs. CONCLUSIONS: Using known binding preferences to tune model parameters, we discover novel modified motifs for a wide array of transcription factors. Finally, we validate our binding preference predictions for OCT4 using cleavage under targets and release using nuclease (CUT&RUN) experiments across conventional, methylation-, and hydroxymethylation-enriched sequences. Our approach readily extends to other DNA modifications. As more genome-wide single-base resolution modification data becomes available, we expect that our method will yield insights into altered transcription factor binding affinities across many different modifications.


Subject(s)
Gene Expression Regulation , Transcription Factors , Epigenomics , DNA , Epigenesis, Genetic
4.
Cancer Res Commun ; 4(1): 237-252, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38126767

ABSTRACT

The non-canonical BAF complex (ncBAF) subunit BRD9 is essential for acute myeloid leukemia (AML) cell viability but has an unclear role in leukemogenesis. Because BRD9 is required for ncBAF complex assembly through its DUF3512 domain, precise bromodomain inhibition is necessary to parse the role of BRD9 as a transcriptional regulator from that of a scaffolding protein. To understand the role of BRD9 bromodomain function in regulating AML, we selected a panel of five AML cell lines with distinct driver mutations, disease classifications, and genomic aberrations and subjected these cells to short-term BRD9 bromodomain inhibition. We examined the bromodomain-dependent growth of these cell lines, identifying a dependency in AML cell lines but not HEK293T cells. To define a mechanism through which BRD9 maintains AML cell survival, we examined nascent transcription, chromatin accessibility, and ncBAF complex binding genome-wide after bromodomain inhibition. We identified extensive regulation of transcription by BRD9 bromodomain activity, including repression of myeloid maturation factors and tumor suppressor genes, while standard AML chemotherapy targets were repressed by inhibition of the BRD9 bromodomain. BRD9 bromodomain activity maintained accessible chromatin at both gene promoters and gene-distal putative enhancer regions, in a manner that qualitatively correlated with enrichment of BRD9 binding. Furthermore, we identified reduced chromatin accessibility at GATA, ETS, and AP-1 motifs and increased chromatin accessibility at SNAIL-, HIC-, and TP53-recognized motifs after BRD9 inhibition. These data suggest a role for BRD9 in regulating AML cell differentiation through modulation of accessibility at hematopoietic transcription factor binding sites. SIGNIFICANCE: The bromodomain-containing protein BRD9 is essential for AML cell viability, but it is unclear whether this requirement is due to the protein's role as an epigenetic reader. We inhibited this activity and identified altered gene-distal chromatin regulation and transcription consistent with a more mature myeloid cell state.


Subject(s)
Leukemia, Myeloid, Acute , Transcription Factors , Humans , Transcription Factors/genetics , Nuclear Proteins/genetics , Gene Expression Regulation , Chromatin/genetics , Leukemia, Myeloid, Acute/genetics , Bromodomain Containing Proteins
6.
bioRxiv ; 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37609196

ABSTRACT

The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.

7.
BMC Biol ; 21(1): 167, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542287

ABSTRACT

BACKGROUND: The FACT complex is a conserved histone chaperone with critical roles in transcription and histone deposition. FACT is essential in pluripotent and cancer cells, but otherwise dispensable for most mammalian cell types. FACT deletion or inhibition can block induction of pluripotent stem cells, yet the mechanism through which FACT regulates cell fate decisions remains unclear. RESULTS: To explore the mechanism for FACT function, we generated AID-tagged murine embryonic cell lines for FACT subunit SPT16 and paired depletion with nascent transcription and chromatin accessibility analyses. We also analyzed SPT16 occupancy using CUT&RUN and found that SPT16 localizes to both promoter and enhancer elements, with a strong overlap in binding with OCT4, SOX2, and NANOG. Over a timecourse of SPT16 depletion, nucleosomes invade new loci, including promoters, regions bound by SPT16, OCT4, SOX2, and NANOG, and TSS-distal DNaseI hypersensitive sites. Simultaneously, transcription of Pou5f1 (encoding OCT4), Sox2, Nanog, and enhancer RNAs produced from these genes' associated enhancers are downregulated. CONCLUSIONS: We propose that FACT maintains cellular pluripotency through a precise nucleosome-based regulatory mechanism for appropriate expression of both coding and non-coding transcripts associated with pluripotency.


Subject(s)
Embryonic Stem Cells , Histones , Animals , Mice , Histones/genetics , Embryonic Stem Cells/metabolism , Chromatin/metabolism , Nucleosomes , Gene Expression Regulation , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Mammals/genetics
8.
BMC Genomics ; 24(1): 201, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055726

ABSTRACT

BACKGROUND: Nucleosome remodeling factors regulate the occupancy and positioning of nucleosomes genome-wide through ATP-driven DNA translocation. While many nucleosomes are consistently well-positioned, some nucleosomes and alternative nucleosome structures are more sensitive to nuclease digestion or are transitory. Fragile nucleosomes are nucleosome structures that are sensitive to nuclease digestion and may be composed of either six or eight histone proteins, making these either hexasomes or octasomes. Overlapping dinucleosomes are composed of two merged nucleosomes, lacking one H2A:H2B dimer, creating a 14-mer wrapped by ~ 250 bp of DNA. In vitro studies of nucleosome remodeling suggest that the collision of adjacent nucleosomes by sliding stimulates formation of overlapping dinucleosomes. RESULTS: To better understand how nucleosome remodeling factors regulate alternative nucleosome structures, we depleted murine embryonic stem cells of the transcripts encoding remodeler ATPases BRG1 or SNF2H, then performed MNase-seq. We used high- and low-MNase digestion to assess the effects of nucleosome remodeling factors on nuclease-sensitive or "fragile" nucleosome occupancy. In parallel we gel-extracted MNase-digested fragments to enrich for overlapping dinucleosomes. We recapitulate prior identification of fragile nucleosomes and overlapping dinucleosomes near transcription start sites, and identify enrichment of these features around gene-distal DNaseI hypersensitive sites, CTCF binding sites, and pluripotency factor binding sites. We find that BRG1 stimulates occupancy of fragile nucleosomes but restricts occupancy of overlapping dinucleosomes. CONCLUSIONS: Overlapping dinucleosomes and fragile nucleosomes are prevalent within the ES cell genome, occurring at hotspots of gene regulation beyond their characterized existence at promoters. Although neither structure is fully dependent on either nucleosome remodeling factor, both fragile nucleosomes and overlapping dinucleosomes are affected by knockdown of BRG1, suggesting a role for the complex in creating or removing these structures.


Subject(s)
DNA-Binding Proteins , Nucleosomes , Animals , Mice , Nucleosomes/genetics , DNA-Binding Proteins/genetics , Histones/metabolism , Embryonic Stem Cells/metabolism , Binding Sites
9.
Nat Cell Biol ; 25(3): 493-507, 2023 03.
Article in English | MEDLINE | ID: mdl-36849558

ABSTRACT

How abnormal neurodevelopment relates to the tumour aggressiveness of medulloblastoma (MB), the most common type of embryonal tumour, remains elusive. Here we uncover a neurodevelopmental epigenomic programme that is hijacked to induce MB metastatic dissemination. Unsupervised analyses of integrated publicly available datasets with our newly generated data reveal that SMARCD3 (also known as BAF60C) regulates Disabled 1 (DAB1)-mediated Reelin signalling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements at the DAB1 locus. We further identify that a core set of transcription factors, enhancer of zeste homologue 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the cis-regulatory elements at the SMARCD3 locus to form a chromatin hub to control SMARCD3 expression in the developing cerebellum and in metastatic MB. Increased SMARCD3 expression activates Reelin-DAB1-mediated Src kinase signalling, which results in a MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for patients with MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Medulloblastoma/genetics , Phosphorylation , Epigenomics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/pharmacology , Cerebellar Neoplasms/genetics , Epigenesis, Genetic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
10.
Front Mol Biosci ; 9: 1037941, 2022.
Article in English | MEDLINE | ID: mdl-36438658

ABSTRACT

The loading of copper (Cu) into cytochrome c oxidase (COX) in mitochondria is essential for energy production in cells. Extensive studies have been performed to characterize mitochondrial cuproenzymes that contribute to the metallation of COX, such as Sco1, Sco2, and Cox17. However, limited information is available on the upstream mechanism of Cu transport and delivery to mitochondria, especially through Cu-impermeable membranes, in mammalian cells. The mitochondrial phosphate transporter SLC25A3, also known as PiC2, binds Cu+ and transports the ion through these membranes in eukaryotic cells, ultimately aiding in the metallation of COX. We used the well-established differentiation model of primary myoblasts derived from mouse satellite cells, wherein Cu availability is necessary for growth and maturation, and showed that PiC2 is a target of MTF1, and its expression is both induced during myogenesis and favored by Cu supplementation. PiC2 deletion using CRISPR/Cas9 showed that the transporter is required for proliferation and differentiation of primary myoblasts, as both processes are delayed upon PiC2 knock-out. The effects of PiC2 deletion were rescued by the addition of Cu to the growth medium, implying the deleterious effects of PiC2 knockout in myoblasts may be in part due to a failure to deliver sufficient Cu to the mitochondria, which can be compensated by other mitochondrial cuproproteins. Co-localization and co-immunoprecipitation of PiC2 and COX also suggest that PiC2 may participate upstream in the copper delivery chain into COX, as verified by in vitro Cu+-transfer experiments. These data indicate an important role for PiC2 in both the delivery of Cu to the mitochondria and COX, favoring the differentiation of primary myoblasts.

11.
J Vis Exp ; (180)2022 02 01.
Article in English | MEDLINE | ID: mdl-35188122

ABSTRACT

Determining the binding locations of a protein on chromatin is essential for understanding its function and potential regulatory targets. Chromatin Immunoprecipitation (ChIP) has been the gold standard for determining protein localization for over 30 years and is defined by the use of an antibody to pull out the protein of interest from sonicated or enzymatically digested chromatin. More recently, antibody tethering techniques have become popular for assessing protein localization on chromatin due to their increased sensitivity. Cleavage Under Targets & Release Under Nuclease (CUT&RUN) is the genome-wide derivative of Chromatin Immunocleavage (ChIC) and utilizes recombinant Protein A tethered to micrococcal nuclease (pA-MNase) to identify the IgG constant region of the antibody targeting a protein of interest, therefore enabling site-specific cleavage of the DNA flanking the protein of interest. CUT&RUN can be used to profile histone modifications, transcription factors, and other chromatin-binding proteins such as nucleosome remodeling factors. Importantly, CUT&RUN can be used to assess the localization of either euchromatic- or heterochromatic-associated proteins and histone modifications. For these reasons, CUT&RUN is a powerful method for determining the binding profiles of a wide range of proteins. Recently, CUT&RUN has been optimized for transcription factor profiling in low populations of cells and single cells and the optimized protocol has been termed ultra-low input CUT&RUN (uliCUT&RUN). Here, a detailed protocol is presented for single-cell factor profiling using uliCUT&RUN in a manual 96-well format.


Subject(s)
Chromatin , DNA , Chromatin/genetics , Chromatin Immunoprecipitation , DNA/metabolism , Micrococcal Nuclease/metabolism , Nucleosomes , Transcription Factors/metabolism
12.
FEBS J ; 289(6): 1374-1384, 2022 03.
Article in English | MEDLINE | ID: mdl-33818917

ABSTRACT

Mentorship is experience and/or knowledge-based guidance. Mentors support, sponsor and advocate for mentees. Having one or more mentors when you seek advice can significantly influence and improve your research endeavours, well-being and career development. Positive mentee-mentor relationships are vital for maintaining work-life balance and success in careers. Early-career researchers (ECRs), in particular, can benefit from mentorship to navigate challenges in academic and nonacademic life and careers. Yet, strategies for selecting mentors and maintaining interactions with them are often underdiscussed within research environments. In this Words of Advice, we provide recommendations for ECRs to seek and manage mentorship interactions. Our article draws from our experiences as ECRs and published work, to provide suggestions for mentees to proactively promote beneficial mentorship interactions. The recommended practices highlight the importance of identifying mentorship needs, planning and selecting multiple and diverse mentors, setting goals, and maintaining constructive, and mutually beneficial working relationships with mentors.


Subject(s)
Mentors , Research Personnel , Humans
13.
FEBS J ; 289(2): 298-307, 2022 01.
Article in English | MEDLINE | ID: mdl-33665964

ABSTRACT

Writing recommendation letters on behalf of students and other early-career researchers is an important mentoring task within academia. An effective recommendation letter describes key candidate qualities such as academic achievements, extracurricular activities, outstanding personality traits, participation in and dedication to a particular discipline, and the mentor's confidence in the candidate's abilities. In this Words of Advice, we provide guidance to researchers on composing constructive and supportive recommendation letters, including tips for structuring and providing specific and effective examples, while maintaining a balance in language and avoiding potential biases.


Subject(s)
Mentoring/standards , Mentors/psychology , Research Personnel/standards , Humans , Research Personnel/education , Writing
14.
Nat Protoc ; 16(5): 2633-2666, 2021 05.
Article in English | MEDLINE | ID: mdl-33911257

ABSTRACT

Determining chromatin-associated protein localization across the genome has provided insight into the functions of DNA-binding proteins and their connections to disease. However, established protocols requiring large quantities of cell or tissue samples currently limit applications for clinical and biomedical research in this field. Furthermore, most technologies have been optimized to assess abundant histone protein localization, prohibiting the investigation of nonhistone protein localization in low cell numbers. We recently described a protocol to profile chromatin-associated protein localization in as low as one cell: ultra-low-input cleavage under targets and release using nuclease (uliCUT&RUN). Optimized from chromatin immunocleavage and CUT&RUN, uliCUT&RUN is a tethered enzyme-based protocol that utilizes a combination of recombinant protein, antibody recognition and stringent purification to selectively target proteins of interest and isolate the associated DNA. Performed in native conditions, uliCUT&RUN profiles protein localization to chromatin with low input and high precision. Compared with other profiling technologies, uliCUT&RUN can determine nonhistone protein chromatin occupancies in low cell numbers, permitting the investigation into the molecular functions of a range of DNA-binding proteins within rare samples. From sample preparation to sequencing library submission, the uliCUT&RUN protocol takes <2 d to perform, with the accompanying data analysis timeline dependent on experience level.


Subject(s)
Blastocyst/metabolism , Chromatin/genetics , Genomics/methods , Single-Cell Analysis/methods , Transcription Factors/metabolism , Cell Line , Humans
15.
Mol Cell Oncol ; 7(5): 1776086, 2020.
Article in English | MEDLINE | ID: mdl-32944634

ABSTRACT

Disruption of chromatin structure could enable early carcinogenesis by facilitating malignant transformation. Using stochastic optical reconstruction microscopy optimized for pathological tissue (PathSTORM), we uncovered a gradual decompaction of higher-order chromatin folding through progressive stages of carcinogenesis. We demonstrated potential detection of pre-cancerous genomic architecture not easily discernible by conventional pathology.

16.
Biology (Basel) ; 9(8)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784701

ABSTRACT

Eukaryotic genomes are pervasively transcribed, producing both coding and non-coding RNAs (ncRNAs). ncRNAs are diverse and a critical family of biological molecules, yet much remains unknown regarding their functions and mechanisms of regulation. ATP-dependent nucleosome remodeling complexes, in modifying chromatin structure, play an important role in transcriptional regulation. Recent findings show that ncRNAs regulate nucleosome remodeler activities at many levels and that ncRNAs are regulatory targets of nucleosome remodelers. Further, a series of recent screens indicate this network of regulatory interactions is more expansive than previously appreciated. Here, we discuss currently described regulatory interactions between ncRNAs and nucleosome remodelers and contextualize their biological functions.

17.
Hepatol Commun ; 4(6): 859-875, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32490322

ABSTRACT

Hepatocyte nuclear factor 4 alpha (HNF4α) is a transcription factor that plays a critical role in hepatocyte function, and HNF4α-based reprogramming corrects terminal liver failure in rats with chronic liver disease. In the livers of patients with advanced cirrhosis, HNF4α RNA expression levels decrease as hepatic function deteriorates, and protein expression is found in the cytoplasm. These findings could explain impaired hepatic function in patients with degenerative liver disease. In this study, we analyzed HNF4α localization and the pathways involved in post-translational modification of HNF4α in human hepatocytes from patients with decompensated liver function. RNA-sequencing analysis revealed that AKT-related pathways, specifically phospho-AKT, is down-regulated in cirrhotic hepatocytes from patients with terminal failure, in whom nuclear levels of HNF4α were significantly reduced, and cytoplasmic expression of HNF4α was increased. cMET was also significantly reduced in failing hepatocytes. Moreover, metabolic profiling showed a glycolytic phenotype in failing human hepatocytes. The contribution of cMET and phospho-AKT to nuclear localization of HNF4α was confirmed using Spearman's rank correlation test and pathway analysis, and further correlated with hepatic dysfunction by principal component analysis. HNF4α acetylation, a posttranslational modification important for nuclear retention, was also significantly reduced in failing human hepatocytes when compared with normal controls. Conclusion: These results suggest that the alterations in the cMET-AKT pathway directly correlate with HNF4α localization and level of hepatocyte dysfunction. This study suggests that manipulation of HNF4α and pathways involved in HNF4α posttranslational modification may restore hepatocyte function in patients with terminal liver failure.

18.
Bioessays ; 42(7): e2000002, 2020 07.
Article in English | MEDLINE | ID: mdl-32490565

ABSTRACT

The remodel the structure of chromatin (RSC) nucleosome remodeling complex is a conserved chromatin regulator with roles in chromatin organization, especially over nucleosome depleted regions therefore functioning in gene expression. Recent reports in Saccharomyces cerevisiae have identified specificities in RSC activity toward certain types of nucleosomes. RSC has now been shown to preferentially evict nucleosomes containing the histone variant H2A.Z in vitro. Furthermore, biochemical activities of distinct RSC complexes has been found to differ when their nucleosome substrate is partially unraveled. Mammalian BAF complexes, the homologs of yeast RSC and SWI/SNF complexes, are also linked to nucleosomes with H2A.Z, but this relationship may be complex and extent of conservation remains to be determined. The interplay of remodelers with specific nucleosome substrates and regulation of remodeler outcomes by nucleosome composition are tantalizing questions given the wave of structural data emerging for RSC and other SWI/SNF family remodelers.


Subject(s)
Chromatin , Saccharomyces cerevisiae Proteins , Animals , Chromatin/genetics , Chromatin Assembly and Disassembly , DNA-Binding Proteins/metabolism , Humans , Nucleosomes , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Substrate Specificity , Transcription Factors/metabolism
19.
Nat Commun ; 11(1): 1899, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32313005

ABSTRACT

Genomic DNA is folded into a higher-order structure that regulates transcription and maintains genomic stability. Although progress has been made on understanding biochemical characteristics of epigenetic modifications in cancer, the in-situ higher-order folding of chromatin structure during malignant transformation remains largely unknown. Here, using optimized stochastic optical reconstruction microscopy (STORM) for pathological tissue (PathSTORM), we uncover a gradual decompaction and fragmentation of higher-order chromatin folding throughout all stages of carcinogenesis in multiple tumor types, and prior to tumor formation. Our integrated imaging, genomic, and transcriptomic analyses reveal functional consequences in enhanced transcription activities and impaired genomic stability. We also demonstrate the potential of imaging higher-order chromatin disruption to detect high-risk precursors that cannot be distinguished by conventional pathology. Taken together, our findings reveal gradual decompaction and fragmentation of higher-order chromatin structure as an enabling characteristic in early carcinogenesis to facilitate malignant transformation, which may improve cancer diagnosis, risk stratification, and prevention.


Subject(s)
Carcinogenesis/pathology , Chromatin/pathology , Image Processing, Computer-Assisted , Microscopy, Fluorescence/methods , Neoplasms/diagnostic imaging , Animals , Biophysics , Epigenesis, Genetic , Genome , Heterochromatin , Humans , Male , Mice , Neoplasms/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Transcriptome
20.
Curr Top Dev Biol ; 138: 1-71, 2020.
Article in English | MEDLINE | ID: mdl-32220294

ABSTRACT

In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.


Subject(s)
Chromatin/metabolism , Embryonic Stem Cells/physiology , Gene Expression Regulation, Developmental , Histones/metabolism , Pluripotent Stem Cells/physiology , Animals , Cell Differentiation , Cell Proliferation , Chromatin/genetics , Embryonic Stem Cells/cytology , Epigenesis, Genetic , Histones/genetics , Humans , Pluripotent Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...