Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 16814, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207358

ABSTRACT

Multidrug resistant (MDR) P. aeruginosa accounts for 35% of all P. aeruginosa isolated from respiratory samples of patients with cystic fibrosis (CF). The usefulness of ß-lactam antibiotics for treating CF, such as carbapenems and later generation cephalosporins, is limited by the development of antibacterial resistance. A proven treatment approach is the combination of a ß-lactam antibiotic with a ß-lactamase inhibitor. New ß-lactam/ß-lactamase inhibitor combinations are available, but data are lacking regarding the susceptibility of MDR CF-associated P. aeruginosa (CFPA) to these new combination therapies. In this study we determined MIC values for three new combinations; imipenem-relebactam (I-R), ceftazidime-avibactam (CZA), and ceftolozane-tazobactam (C/T) against MDR CFPA (n = 20). The MIC90 of I-R, CZA, and C/T was 64/4, 32/4, and 16/8 (all µg/mL), respectively. The susceptibility of isolates to imipenem was not significantly improved with the addition of relebactam (p = 0.68). However, susceptibility to ceftazidime was significantly improved with the addition of avibactam (p < 0.01), and the susceptibility to C/T was improved compared to piperacillin/tazobactam (p < 0.05) These data provide in vitro evidence that I-R may not be any more effective than imipenem monotherapy against MDR CFPA. The pattern of susceptibility observed for CZA and C/T in the current study was similar to data previously reported for non-CF-associated MDR P. aeruginosa.


Subject(s)
Ceftazidime , Pseudomonas Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds , Carbapenems/pharmacology , Ceftazidime/therapeutic use , Cephalosporins , Drug Combinations , Drug Resistance, Multiple, Bacterial , Humans , Imipenem/pharmacology , Lactams/pharmacology , Microbial Sensitivity Tests , Monobactams/pharmacology , Piperacillin, Tazobactam Drug Combination/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa , Tazobactam/pharmacology , Tazobactam/therapeutic use , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use
2.
BMC Complement Med Ther ; 22(1): 228, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36028831

ABSTRACT

BACKGROUND: Honey has broad spectrum antibacterial activity against clinically important organisms and may be suitable for treating superficial bacterial infections. However, very little data are available describing potential interactions between honey and other topically applied agents such as antiseptics or essential oils. METHODS: Interactions between pairs of antibacterial agents were investigated by performing checkerboard assays and determining the fractional inhibitory concentration indices (FICIs). Interactions between the two monofloral honeys marri (from Corymbia calophylla) and manuka, and the antiseptic agents benzalkonium chloride, chlorhexidine digluconate, silver (I) nitrate, tea tree oil, and Eucalyptus polybractea oil were investigated against Staphylococcus aureus ATCC® 43300 and Pseudomonas aeruginosa ATCC® 27853. RESULTS: Additive or indifferent interactions (FICI 0.5-2) were observed for all combinations against both organisms tested, with the exception of chlorhexidine and honey. Chlorhexidine and marri honey showed an antagonistic relationship against S. aureus (median FICI 2.00, range 1.25-4.83). Similarly, chlorhexidine and manuka honey showed antagonism against S. aureus (median FICI 2.33, range 2.00-2.67). CONCLUSIONS: With the exception of chlorhexidine, these data indicate that honey does not interfere with the antimicrobial activity of the tested agents, and that honey may be suitable for combination therapy with other topically applied antibacterial agents for treating superficial bacterial infections.


Subject(s)
Anti-Infective Agents, Local , Bacterial Infections , Honey , Oils, Volatile , Anti-Bacterial Agents , Chlorhexidine , Humans , Microbial Sensitivity Tests , Staphylococcus aureus
3.
Complement Ther Clin Pract ; 49: 101640, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35868137

ABSTRACT

Impetigo is a contagious skin disease caused by Staphylococcus aureus and Streptococcus pyogenes. Without treatment, impetigo may be recurrent, develop into severe disease, or have serious, life-threatening sequelae. Standard treatment consists of topical or systemic antibiotic therapy (depending on severity), however, due to antibiotic resistance some therapies are increasingly ineffective. In this study we evaluated the potential for honey as an alternative treatment for impetigo. A broth microdilution assay in 96-well microtitre trays was used to determine the minimum inhibitory concentrations (MICs) of six monofloral honeys (jarrah, marri, red bell, banksia, wandoo, and manuka), a multifloral honey and artificial honey against S. aureus (n = 10), S. pyogenes (n = 10), and coagulase-negative staphylococci (CoNS) (n = 10). The optical density (OD) of all microtitre tray wells was also determined before and after assay incubation to analyse whether sub-MIC growth inhibition occurred. Jarrah, marri, red bell, banksia, and manuka honeys were highly effective at inhibiting S. aureus and CoNS, with MIC50 values ranging from 4 to 8% w/v honey. S. pyogenes was also inhibited by these same honeys, albeit at higher concentrations (8-29% w/v). Wandoo and multifloral honeys had the least antibacterial activity with MICs of >30% (w/v) for all isolates. However, OD data indicated that sub-MIC concentrations of honey were still partially restricting bacterial growth. Our pre-clinical data indicate that honey may be a potential therapeutic agent for the routine treatment of mild impetigo, and we suggest that clinical trials would be appropriate to further investigate this.


Subject(s)
Honey , Impetigo , Humans , Honey/analysis , Staphylococcus aureus , Impetigo/drug therapy , Australia , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...