Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 164: 223-229, 2016 11.
Article in English | MEDLINE | ID: mdl-27016471

ABSTRACT

BACKGROUND: It is known that skin pigmentation reduces the penetration of ultraviolet radiation (UVR) and thus photosynthesis of 25-hydroxvitamin D (25(OH)D). However ethnic differences in 25(OH)D production remain to be elucidated. OBJECTIVE: The aim of this study was to investigate differences in vitamin D production between UK South Asian and Caucasian postmenopausal women, in response to a defined and controlled exposure to UVR. DESIGN: Seventeen women; 9 white Caucasian (skin phototype II and III), 8 South Asian women (skin phototype IV and V) participated in the study, acting as their own controls. Three blood samples were taken for the measurement of vitamin D status during the run in period (9days, no sunbed exposure) after which, all subjects underwent an identical UVR exposure protocol irrespective of skin colour (9 days, 3 sun bed sessions, 6, 8 and 8min respectively with approximately 80% body surface exposed). Skin tone was measured four times during the study. RESULTS: Despite consistently lower 25(OH)D levels in South Asian women, they were shown to synthesise vitamin D as efficiently as Caucasians when exposed to the same dose of UVR. Interestingly, the baseline level of vitamin D rather than ethnicity and skin tone influenced the amount of vitamin D synthesised. CONCLUSIONS: This study have found no ethnic differences in the synthesis of 25(OH)D, possibly due to the baseline differences in 25(OH)D concentration or due to the small population size used in this study. Applying mixed linear model, findings indicated no effect of ethnicity and skin tone on the production of vitamin D; baseline level and length of exposure were the critical factors. To confirm that ethnicity and skin tone has no effect on 25(OH)D production, a larger sample size study is required that considers other ethnic groups with highly pigmented skin. Initial vitamin D status influences the amount of UVB needed to reach equal serum concentrations.


Subject(s)
Vitamin D Deficiency/metabolism , Vitamin D/analogs & derivatives , Aged , Asian People , Female , Humans , Middle Aged , Parathyroid Hormone/blood , Parathyroid Hormone/metabolism , Postmenopause , Skin Pigmentation , Ultraviolet Rays , United Kingdom/epidemiology , Vitamin D/blood , Vitamin D/metabolism , Vitamin D Deficiency/blood , Vitamin D Deficiency/epidemiology , White People
2.
Bone ; 55(1): 36-43, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23531785

ABSTRACT

There is some evidence that South Asian women may have an increased risk of osteoporosis compared with Caucasian women, although whether South Asians are at increased risk of fracture is not clear. It is unknown whether older South Asian women differ from Caucasian women in bone geometry. This is the first study, to the authors' knowledge, to use peripheral Quantitative Computed Tomography (pQCT) to measure radial and tibial bone geometry in postmenopausal South Asian women. In comparison to Caucasian women, Asian women had smaller bone size at the 4% (-18% p<0.001) and 66% radius (-15% p=0.04) as well as increased total density at the 4% (+13% p=0.01) radius. For the tibia, they had a smaller bone size at the 4% (-16% p=0.005) and 14% (-38% p=0.002) sites. Also, Asians had increased cortical thickness (-17% p=0.04) at the 38% tibia, (in proportion to bone size (-30% p=0.003)). Furthermore, at the 4% and 14% tibia there were increased total densities (+12% to +29% p<0.01) and at the 14% tibia there was increased cortical density (+5% p=0.005) in Asians. These differences at the 14% and 38% (but not 4%) remained statistically significant after adjustment for Body Mass Index (BMI). These adaptations are similar to those seen previously in Chinese women. Asian women had reduced strength at the radius and tibia, evidenced by the 20-40% reduction in both polar Strength Strain Index (SSIp) and fracture load (under bending). Overall, the smaller bone size in South Asians is likely to be detrimental to bone strength, despite some adaptations in tibial cortical thickness and tibial and radial density which may partially compensate for this.


Subject(s)
Adaptation, Physiological , Asian People , Bone Density/physiology , Postmenopause/physiology , Tibia/anatomy & histology , Tibia/physiology , Aged , Body Mass Index , Female , Humans , Middle Aged , Organ Size , Radius/diagnostic imaging , Radius/physiology , Tibia/diagnostic imaging , Tomography, X-Ray Computed , White People
SELECTION OF CITATIONS
SEARCH DETAIL