Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Rep Prog Phys ; 87(4)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38373354

ABSTRACT

Use and performance criteria of photonic devices increase in various application areas such as information and communication, lighting, and photovoltaics. In many current and future photonic devices, surfaces of a semiconductor crystal are a weak part causing significant photo-electric losses and malfunctions in applications. These surface challenges, many of which arise from material defects at semiconductor surfaces, include signal attenuation in waveguides, light absorption in light emitting diodes, non-radiative recombination of carriers in solar cells, leakage (dark) current of photodiodes, and light reflection at solar cell interfaces for instance. To reduce harmful surface effects, the optical and electrical passivation of devices has been developed for several decades, especially with the methods of semiconductor technology. Because atomic scale control and knowledge of surface-related phenomena have become relevant to increase the performance of different devices, it might be useful to enhance the bridging of surface physics to photonics. Toward that target, we review some evolving research subjects with open questions and possible solutions, which hopefully provide example connecting points between photonic device passivation and surface physics. One question is related to the properties of the wet chemically cleaned semiconductor surfaces which are typically utilized in device manufacturing processes, but which appear to be different from crystalline surfaces studied in ultrahigh vacuum by physicists. In devices, a defective semiconductor surface often lies at an embedded interface formed by a thin metal or insulator film grown on the semiconductor crystal, which makes the measurements of its atomic and electronic structures difficult. To understand these interface properties, it is essential to combine quantum mechanical simulation methods. This review also covers metal-semiconductor interfaces which are included in most photonic devices to transmit electric carriers to the semiconductor structure. Low-resistive and passivated contacts with an ultrathin tunneling barrier are an emergent solution to control electrical losses in photonic devices.

2.
Nanotechnology ; 33(18)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35051915

ABSTRACT

Cathodoluminescence mapping is used as a contactless method to probe the electron concentration gradient of Te-doped GaAs nanowires. The room temperature and low temperature (10 K) cathodoluminescence analysis method previously developed for GaAs:Si is first validated on five GaAs:Te thin film samples, before extending it to the two GaAs:Te NW samples. We evidence an electron concentration gradient ranging from below 1 × 1018cm-3to 3.3 ×1018cm-3along the axis of a GaAs:Te nanowire grown at 640 °C, and a homogeneous electron concentration of around 6-8 × 1017cm-3along the axis of a GaAs:Te nanowire grown at 620 °C. The differences in the electron concentration levels and gradients between the two nanowires is attributed to different Te incorporation efficiencies by vapor-solid and vapor-liquid-solid processes.

4.
Sci Rep ; 11(1): 4316, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33619343

ABSTRACT

Hybridization of semiconductor nanostructures with asymmetric metallic layers offers new paths to circular polarization control and chiral properties. Here we study, both experimentally and numerically, chiral properties of GaAs-based nanowires (NWs) which have two out of six sidewalls covered by Au. Sparse ensembles of vertical, free-standing NWs were fabricated by means of lithography-free self-assembled technique on Si substrates and subsequently covered by Au using tilted evaporation. We report on optical spin-dependent specular reflection in the 680-1000 nm spectral range when the orientation of the golden layers follows the rule of extrinsic chirality. The analysis shows reflection peaks of the chiral medium whose intensity is dependent on the light handedness. We further propose a novel, time-efficient numerical method that enables a better insight into the far-field intensity and distribution of the scattered light from a sparse NW ensembles. The measurements done on three different samples in various orientations show good agreement with theoretical predictions over a broad wavelength range.

5.
Nanotechnology ; 32(13): 130001, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33276349

ABSTRACT

Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlO x and use of AlN x deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs. All three passivation mechanisms resulted in reducing the oxidation of Ga and As atoms at the GaAs surface and consequently in enhancing the room-temperature photoluminescence (PL) intensity. However, long-term stability of the passivation effect is exhibited only by the hydrazine + AlO x process and more significantly by the AlN x method. Moreover, in contrast to the results obtained from hydrazine-based methods, the AlN x passivation strongly reduces the spectral diffusion of the QD exciton lines caused by charge fluctuations at the GaAs surface. The AlN x passivation is found to reduce the surface recombination velocity by three orders of magnitude (corresponding to an increase of room-temperature PL signal by ∼1030 times). The reduction of surface recombination velocity is demonstrated on surface-sensitive GaAs (100) and the passivating effect is stable for more than one year. This effective method of passivation, coupled with its stability in time, is extremely promising for practical device applications such as quantum light sources based on InAs/GaAs QDs positioned in small-volume photonic cavities and hence in the proximity of GaAs-air interface.

6.
Nanotechnology ; 31(46): 465601, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-32750687

ABSTRACT

Precise control and broad tunability of the growth parameters are essential in engineering the optical and electrical properties of semiconductor nanowires (NWs) to make them suitable for practical applications. To this end, we report the effect of As species, namely As2 and As4, on the growth of self-catalyzed GaAs based NWs. The role of As species is further studied in the presence of Te as n-type dopant in GaAs NWs and Sb as an additional group V element to form GaAsSb NWs. Using As4 enhances the growth of NWs in the axial direction over a wide range of growth parameters and diminishes the tendency of Te and Sb to reduce the NW aspect ratio. By extending the axial growth parameter window, As4 allows growth of GaAsSb NWs with up to 47% in Sb composition. On the other hand, As2 favors sidewall growth which enhances the growth in the radial direction. Thus, the selection of As species is critical for tuning not only the NW dimensions, but also the incorporation mechanisms of dopants and ternary elements. Moreover, the commonly observed dependence of twinning on Te and Sb remains unaffected by the As species. By exploiting the extended growth window associated with the use of As4, enhanced Sb incorporation and optical emission up to 1400 nm wavelength range is demonstrated. This wavelength corresponds to the telecom E-band, which opens new prospects for this NW material system in future telecom applications while simultaneously enabling their integration to the silicon photonics platform.

7.
Micromachines (Basel) ; 11(2)2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32102171

ABSTRACT

Optical circular dichroism (CD) is an important phenomenon in nanophotonics, that addresses top level applications such as circular polarized photon generation in optics, enantiomeric recognition in biophotonics and so on. Chiral nanostructures can lead to high CD, but the fabrication process usually requires a large effort, and extrinsic chiral samples can be produced by simpler techniques. Glancing angle deposition of gold on GaAs nanowires can (NWs) induces a symmetry breaking that leads to an optical CD response that mimics chiral behavior. The GaAs NWs have been fabricated by a self-catalyzed, bottom-up approach, leading to large surfaces and high-quality samples at a relatively low cost. Here, we investigate the second harmonic generation circular dichroism (SHG-CD) signal on GaAs nanowires partially covered with Au. SHG is a nonlinear process of even order, and thus extremely sensitive to symmetry breaking. Therefore, the visibility of the signal is very high when the fabricated samples present resonances at first and second harmonic frequencies (i.e., 800 and 400 nm, in our case).

8.
Nanoscale Res Lett ; 14(1): 344, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31728662

ABSTRACT

The performance of Ohmic contacts applied to semiconductor nanowires (NWs) is an important aspect for enabling their use in electronic or optoelectronic devices. Due to the small dimensions and specific surface orientation of NWs, the standard processing technology widely developed for planar heterostructures cannot be directly applied. Here, we report on the fabrication and optimization of Pt/Ti/Pt/Au Ohmic contacts for p-type GaAs nanowires grown by molecular beam epitaxy. The devices were characterized by current-voltage (IV) measurements. The linearity of the IV characteristics curves of individual nanowires was optimized by adjusting the layout of the contact metal layers, the surface treatment prior to metal evaporation, and post-processing thermal annealing. Our results reveal that the contact resistance is remarkably decreased when a Pt layer is deposited on the GaAs nanowire prior to the traditional Ti/Pt/Au multilayer layout used for p-type planar GaAs. These findings are explained by an improved quality of the metal-GaAs interface, which was evidenced by grazing incidence X-ray diffraction measurements in similar metallic thin films deposited on GaAs (110) substrates. In particular, we show that Ti exhibits low degree of crystallinity when deposited on GaAs (110) surface which directly affects the contact resistance of the NW devices. The deposition of a thin Pt layer on the NWs prior to Ti/Pt/Au results in a 95% decrease in the total electrical resistance of Be-doped GaAs NWs which is associated to the higher degree of crystallinity of Pt than Ti when deposited directly on GaAs (110).

9.
Nanotechnology ; 30(33): 335709, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-30995612

ABSTRACT

Effective and controllable doping is instrumental for enabling the use of III-V semiconductor nanowires (NWs) in practical electronics and optoelectronics applications. To this end, dopants are incorporated during self-catalyzed growth via vapor-liquid-solid mechanism through the catalyst droplet or by vapor-solid mechanism of the sidewall growth. The interplay of these mechanisms together with the competition between axial elongation and radial growth of NWs can result in dopant concentration gradients along the NW axis. Here, we report an investigation of Be-doped p-type GaAs NWs grown by the self-catalyzed method on lithography-free Si/SiO x templates. The influence of dopant incorporation on the structural properties of the NWs is analyzed by scanning and transmission electron microscopy. By combining spatially resolved Raman spectroscopy and transport characterization, we are able to estimate the carrier concentration, mobility and resistivity on single-NW level. We show that Be dopants are incorporated predominantly by vapor-solid mechanism for low Be flux, while the relative contribution of vapor-liquid-solid incorporation is increased for higher Be flux, resulting in axial dopant gradients that depend on the nominal doping level.

10.
Sci Rep ; 9(1): 5040, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30911080

ABSTRACT

Chiral optical response is an inherent property of molecules and nanostructures, which cannot be superimposed on their mirror images. In specific cases, optical chirality can be observed also for symmetric structures. This so-called extrinsic chirality requires that the mirror symmetry is broken by the geometry of the structure together with the incident or emission angle of light. From the fabrication point of view, the benefit of extrinsic chirality is that there is no need to induce structural chirality at nanoscale. This paper reports demonstration extrinsic chirality of photoluminescence emission from asymmetrically Au-coated GaAs-AlGaAs-GaAs core-shell nanowires fabricated on silicon by a completely lithography-free self-assembled method. In particular, the extrinsic chirality of PL emission is shown to originate from a strong symmetry breaking of fundamental HE11 waveguide modes due to the presence of the asymmetric Au coating, causing preferential emission of left and right-handed emissions in different directions in the far field.

11.
Nano Lett ; 19(1): 82-89, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30537843

ABSTRACT

The typical vapor-liquid-solid growth of nanowires is restricted to a vertical one-dimensional geometry, while there is a broad interest for more complex structures in the context of electronics and photonics applications. Controllable switching of the nanowire growth direction opens up new horizons in the bottom-up engineering of self-assembled nanostructures, for example, to fabricate interconnected nanowires used for quantum transport measurements. In this work, we demonstrate a robust and highly controllable method for deterministic switching of the growth direction of self-catalyzed GaAs nanowires. The method is based on the modification of the droplet-nanowire interface in the annealing stage without any fluxes and subsequent growth in the horizontal direction by a twin-mediated mechanism with indications of a novel type of interface oscillations. A 100% yield of switching the nanowire growth direction from vertical to horizontal is achieved by systematically optimizing the growth parameters. A kinetic model describing the competition of different interface structures is introduced to explain the switching mechanism and the related nanowire geometries. The model also predicts that the growth of similar structures is possible for all vapor-liquid-solid nanowires with commonly observed truncated facets at the growth interface.

12.
Nanomaterials (Basel) ; 7(9)2017 Sep 16.
Article in English | MEDLINE | ID: mdl-28926948

ABSTRACT

We report observations of field emission from self-catalyzed GaAs nanowires grown on Si (111). The measurements were taken inside a scanning electron microscope chamber with a nano-controlled tungsten tip functioning as anode. Experimental data were analyzed in the framework of the Fowler-Nordheim theory. We demonstrate stable current up to 10-7 A emitted from the tip of single nanowire, with a field enhancement factor ß of up to 112 at anode-cathode distance d = 350 nm. A linear dependence of ß on the anode-cathode distance was found. We also show that the presence of a Ga catalyst droplet suppresses the emission of current from the nanowire tip. This allowed for the detection of field emission from the nanowire sidewalls, which occurred with a reduced field enhancement factor and stability. This study further extends GaAs technology to vacuum electronics applications.

13.
Nano Lett ; 17(9): 5350-5355, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28782958

ABSTRACT

Herein, we present experimental data on the record length uniformity within the ensembles of semiconductor nanowires. The length distributions of Ga-catalyzed GaAs nanowires obtained by cost-effective lithography-free technique on silicon substrates systematically feature a pronounced sub-Poissonian character. For example, nanowires with the mean length ⟨L⟩ of 2480 nm show a length distribution variance of only 367 nm2, which is more than twice smaller than the Poisson variance h⟨L⟩ of 808 nm2 for this mean length (with h = 0.326 nm as the height of GaAs monolayer). For 5125 nm mean length, the measured variance is 1200 nm2 against 1671 nm2 for Poisson distribution. A supporting model to explain the experimental findings is proposed. We speculate that the fluctuation-induced broadening of the length distribution is suppressed by nucleation antibunching, the effect which is commonly observed in individual vapor-liquid-solid nanowires but has never been seen for their ensembles. Without kinetic fluctuations, the two remaining effects contributing to the length distribution width are the nucleation randomness for nanowires emerging from the substrate and the shadowing effect on long enough nanowires. This explains an interesting time evolution of the variance that saturates after a short incubation stage but then starts increasing again due to shadowing, remaining, however, smaller than the Poisson value for a sufficiently long time.

14.
Materials (Basel) ; 10(5)2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28772833

ABSTRACT

Er-doped phosphate glass ceramics were fabricated by melt-quenching technique followed by a heat treatment. The effect of the crystallization on the structural and luminescence properties of phosphate glasses containing Al2O3, TiO2, and ZnO was investigated. The morphological and structural properties of the glass ceramics were characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), and micro-Raman spectroscopy. Additionally, the luminescence spectra and the lifetime values were measured in order to study the influence of the crystallization on the spectroscopic properties of the glasses. The volume ratio between the crystal and the glassy phases increased along with the duration of the heat treatment. The crystallization of the glass ceramics was confirmed by the presence of sharp peaks in the XRD patterns and different crystal phases were identified depending on the glass composition. Sr(PO3)2 crystals were found to precipitate in all the investigated glasses. As evidenced by the spectroscopic properties, the site of the Er3+ ions was not strongly affected by the heat treatment except for the fully crystallized glass ceramic which does not contain Al2O3, TiO2, and ZnO. An increase of the lifetime was also observed after the heat treatment of this glass. Therefore, we suspect that the Er3+ ions are incorporated in the precipitated crystals only in this glass ceramic.

15.
Opt Express ; 25(13): 14148-14157, 2017 Jun 26.
Article in English | MEDLINE | ID: mdl-28789000

ABSTRACT

We demonstrate the control of enhanced chiral field distribution at the surface of hybrid metallo-dielectric nanostructures composed of self-assembled vertical hexagonal GaAs-based nanowires having three of the six sidewalls covered with Au. We show that weakly-guided modes of vertical GaAs nanowires can generate regions of high optical chirality that are further enhanced by the break of the symmetry introduced by the gold layer. Changing the angle of incidence of a linearly polarized plane wave it is possible to tailor and optimize the maps of the optical chirality in proximity of the gold plated walls. The low cost feasibility of the sample combined to the simple control by using linearly polarized light and the easy positioning of chiral molecules by functionalization of the gold plates make our proposed scheme very promising for enhanced enantioselective spectroscopy applications.

16.
Sci Rep ; 7(1): 2833, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28588228

ABSTRACT

III-V semiconductors nanowires (NW) have recently attracted a significant interest for their potential application in the development of high efficiency, highly-integrated photonic devices and in particular for the possibility to integrate direct bandgap materials with silicon-based devices. Here we report the absorbance properties of GaAs-AlGaAs-GaAs core-shell-supershell NWs using photo-acoustic spectroscopy (PAS) measurements in the spectral range from 300 nm to 1100 nm wavelengths. The NWs were fabricated by self-catalyzed growth on Si substrates and their dimensions (length ~5 µm, diameter ~140-150 nm) allow for the coupling of the incident light to the guided modes in near-infrared (IR) part of the spectrum. This coupling results in resonant absorption peaks in the visible and near IR clearly evidenced by PAS. The analysis reveal broadening of the resonant absorption peaks arising from the NW size distribution and the interaction with other NWs. The results show that the PAS technique, directly providing scattering independent absorption spectra, is a very useful tool for the characterization and investigation of vertical NWs as well as for the design of NW ensembles for photonic applications, such as Si-integrated light sources, solar cells, and wavelength dependent photodetectors.

17.
Nanoscale Res Lett ; 12(1): 192, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28314359

ABSTRACT

Structural analysis of self-catalyzed GaAs nanowires (NWs) grown on lithography-free oxide patterns is described with insight on their growth kinetics. Statistical analysis of templates and NWs in different phases of the growth reveals extremely high-dimensional uniformity due to a combination of uniform nucleation sites, lack of secondary nucleation of NWs, and self-regulated growth under the effect of nucleation antibunching. Consequently, we observed the first evidence of sub-Poissonian GaAs NW length distributions. The high phase purity of the NWs is demonstrated using complementary transmission electron microscopy (TEM) and high-resolution X-ray diffractometry (HR-XRD). It is also shown that, while NWs are to a large extent defect-free with up to 2-µm-long twin-free zincblende segments, low-temperature micro-photoluminescence spectroscopy reveals that the proportion of structurally disordered sections can be detected from their spectral properties.

18.
Nanoscale Res Lett ; 10(1): 938, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26058509

ABSTRACT

Structural and optical properties of InAs quantum dot (QD) chains formed in etched GaAs grooves having different periods from 200 to 2000 nm in [010] orientation are reported. The site-controlled QDs were fabricated by molecular beam epitaxy on soft UV-nanoimprint lithography-patterned GaAs(001) surfaces. Increasing the groove periods decreases the overall QD density but increases the QD size and the linear density along the groove direction. The effect of the increased QD size with larger periods is reflected in ensemble photoluminescence measurements as redshift of the QD emission. Furthermore, we demonstrate the photoluminescence emission from single QD chains.

19.
Nanoscale Res Lett ; 7(1): 313, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22713215

ABSTRACT

We report the temperature-dependent photoluminescence of single site-controlled and self-assembled InAs quantum dots. We have used nanoimprint lithography for patterning GaAs(100) templates and molecular beam epitaxy for quantum dot deposition. We show that the influence of the temperature on the photoluminescence properties is similar for quantum dots on etched nanopatterns and randomly positioned quantum dots on planar surfaces. The photoluminescence properties indicate that the prepatterning does not degrade the radiative recombination rate for the site-controlled quantum dots.

20.
Nanoscale Res Lett ; 5(12): 1892-6, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-21170401

ABSTRACT

We report the use of partially relaxed tensile as well as compressively strained GaInP layers for lateral ordering of InAs quantum dots with the aid of misfit dislocation networks. The strained layers and the InAs QDs were characterized by means of atomic force microscopy, scanning electron microscopy, and X-ray reciprocal space mapping. The QD-ordering properties of compressive GaInP are found to be very similar with respect to the use of compressive GaInAs, while a significantly stronger ordering of QDs was observed on tensile GaInP. Furthermore, we observed a change of the major type of dislocation in GaInP layers as the growth temperature was modified.

SELECTION OF CITATIONS
SEARCH DETAIL
...