Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Clin Invest ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190487

ABSTRACT

Tissue regeneration is orchestrated by macrophages that clear damaged cells and promote regenerative inflammation. How macrophages spatially adapt and diversify their functions to support the architectural requirements of actively regenerating tissue remains unknown. In this study, we reconstructed the dynamic trajectories of myeloid cells isolated from acutely injured and early-stage dystrophic muscles. We identified divergent subsets of monocytes/macrophages and dendritic cells (DCs) and validated markers (e.g., GPNMB) and transcriptional regulators associated with defined functional states. In dystrophic muscle, specialized repair-associated subsets exhibited distinct macrophage diversity and reduced DC heterogeneity. Integrating spatial transcriptomics analyses with immunofluorescence uncovered the ordered distribution of subpopulations and multilayered regenerative inflammation zones (RIZs) where distinct macrophage subsets are organized in functional zones around damaged myofibers supporting all phases of regeneration. Importantly, intermittent glucocorticoid treatment disrupted the RIZs. Our findings suggest that macrophage subtypes mediated the development of the highly ordered architecture of regenerative tissues, unveiling the principles of the structured yet dynamic nature of regenerative inflammation supporting effective tissue repair.

2.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979166

ABSTRACT

Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.

3.
JCI Insight ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042472

ABSTRACT

Alveolar macrophages (AMs) act as gatekeepers of the lung's immune responses, serving essential roles in recognizing and eliminating pathogens. The transcription factor (TF) Early Growth Response 2 (EGR2) has been recently described as required for mature AMs in mice; however, its mechanisms of action have not been explored. Here, we identified EGR2 as an epigenomic regulator and likely direct proximal transcriptional activator in AMs using epigenomic approaches (RNA-sequencing, ATAC-sequencing, and CUT&RUN). The predicted direct proximal targets of EGR2 included a subset of AM identity genes, and ones related to pathogen recognition, phagosome maturation, and adhesion, such as Clec7a, Atp6v0d2, Itgb2, Rhoc, and Tmsb10. We provided evidence that EGR2 deficiency led to impaired zymosan internalization and reduced the capacity to respond to Aspergillus fumigatus. Mechanistically, the lack of EGR2 altered the transcriptional response, secreted cytokines (i.e., CXCL11), and inflammation-resolving lipid mediators (i.e., RvE1) of AMs during in vivo zymosan-induced inflammation, which manifested in impaired resolution. Our findings demonstrated that EGR2 is a key proximal transcriptional activator and epigenomic bookmarker in AMs responsible for select, distinct components of cell identity and a protective transcriptional and epigenomic program against fungi.

4.
iScience ; 27(5): 109582, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38726366

ABSTRACT

Anterior thalamus (ANT) deep-brain stimulation (DBS) is an approved therapy for drug resistant epilepsy. We aimed to identify interictal epileptiform discharges (IED) in the ANT and to investigate their relationship with surface IEDs. Fifteen patients were monitored for two consecutive nights with externalized thalamic leads to analyze the intrathalamic epileptiform activities (TIED). Forty-six % of all contacts were located within the ANT. We found that all the responders had TIEDs within the ANT, while this held true only for 44% of the non-responders. The overall response rate (RR) at 1-year follow-up was 40%, while it was 44% in bilateral ANT hit patients and 45% in epileptic focus side hit. However, in case of TIEDs present in the focus side the RR reached as high as 71%. TIED activity may prove the pathophysiological connection to the seizure focus, and stimulation of this area might have a better suppressing effect on seizures.

5.
Am J Physiol Cell Physiol ; 326(4): C1248-C1261, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38581663

ABSTRACT

Adipose-derived stem cells (ADSCs) play an important role in the differential capacity for excess energy storage between upper body abdominal (ABD) adipose tissue (AT) and lower body gluteofemoral (GF) AT. We cultured ADSCs from subcutaneous ABD AT and GF AT isolated from eight women with differential body fat distribution and performed single-cell RNA sequencing. Six populations of ADSCs were identified and segregated according to their anatomical origin. The three ADSC subpopulations in GF AT were characterized by strong cholesterol/fatty acid (FA) storage and proliferation signatures. The two ABD subpopulations, differentiated by higher expression of committed preadipocyte marker genes, were set apart by differential expression of extracellular matrix and ribosomal genes. The last population, identified in both depots, was similar to smooth muscle cells and when individually isolated and cultured in vitro they differentiated less than the other subpopulations. This work provides important insight into the use of ADSC as an in vitro model of adipogenesis and suggests that specific subpopulations of GF-ADSCs contribute to the more robust capacity for GF-AT to expand and grow compared with ABD-AT in women.NEW & NOTEWORTHY Identification of distinct subpopulations of adipose-derived stem cells (ADSCs) in upper body abdominal subcutaneous (ABD) and lower body gluteofemoral subcutaneous (GF) adipose tissue depots. In ABD-ADSCs, subpopulations are more committed to adipocyte lineage. GF-ADSC subpopulations are enriched for genes involved in lipids and cholesterol metabolism. Similar depot differences were found in stem cell population identified in freshly isolated stoma vascular fraction. The repertoire of ADSCs subpopulations was different in apple-shaped versus pear-shaped women.


Subject(s)
Adipose Tissue , Subcutaneous Fat , Humans , Female , Adipose Tissue/metabolism , Adipocytes/metabolism , Sequence Analysis, RNA , Cholesterol/metabolism
6.
PLoS One ; 19(4): e0301447, 2024.
Article in English | MEDLINE | ID: mdl-38557762

ABSTRACT

Rexinoids are agonists of nuclear rexinoid X receptors (RXR) that heterodimerize with other nuclear receptors to regulate gene transcription. A number of selective RXR agonists have been developed for clinical use but their application has been hampered by the unwanted side effects associated with the use of rexinoids and a limited understanding of their mechanisms of action across different cell types. Our previous studies showed that treatment of organotypic human epidermis with the low toxicity UAB30 and UAB110 rexinoids resulted in increased steady-state levels of all-trans-retinoic acid (ATRA), the obligatory ligand of the RXR-RAR heterodimers. Here, we investigated the molecular mechanism underlying the increase in ATRA levels using a dominant negative RXRα that lacks the activation function 2 (AF-2) domain. The results demonstrated that overexpression of dnRXRα in human organotypic epidermis markedly reduced signaling by resident ATRA, suggesting the existence of endogenous RXR ligand, diminished the biological effects of UAB30 and UAB110 on epidermis morphology and gene expression, and nearly abolished the rexinoid-induced increase in ATRA levels. Global transcriptome analysis of dnRXRα-rafts in comparison to empty vector-transduced rafts showed that over 95% of the differentially expressed genes in rexinoid-treated rafts constitute direct or indirect ATRA-regulated genes. Thus, the biological effects of UAB30 and UAB110 are mediated through the AF-2 domain of RXRα with minimal side effects in human epidermis. As ATRA levels are known to be reduced in certain epithelial pathologies, treatment with UAB30 and UAB110 may represent a promising therapy for normalizing the endogenous ATRA concentration and signaling in epithelial tissues.


Subject(s)
Furylfuramide , Tretinoin , Humans , Retinoid X Receptors/genetics , Retinoid X Receptors/agonists , Retinoid X Receptors/metabolism , Ligands , Tretinoin/pharmacology , Tretinoin/metabolism , Epidermis/metabolism , Receptors, Cytoplasmic and Nuclear
7.
Magy Onkol ; 68(1): 5-12, 2024 Mar 14.
Article in Hungarian | MEDLINE | ID: mdl-38484371

ABSTRACT

The treatment of central nervous system tumors is still a major challenge for the oncological and neurosurgical teams. Due to the heterogeneous histological and topological characteristics of these neoplasms, every case requires individual evaluation. In addition to histology and stage, survival is largely determined by the extent of resection, which can be severely limited by the proximity of eloquent brain regions. A key component of current modern neuro-oncological care is the planning and execution of surgical intervention to ensure the longest possible progression-free survival with adequate quality of life. The simultaneous development of several pre- and intra-operative imaging modalities is making optimal therapy more and more accessible and safe. Structural, diffusion and functional MRI offers the possibility to visualize the tumor and the surrounding areas both before and during surgery. For the surgeon, the optimal intra-operative environment, orientation and visual acuity are provided by increasingly sophisticated microscopes, navigation devices, intra-operative imaging equipment, endo- and exoscopes.


Subject(s)
Brain Neoplasms , Neurosurgery , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Quality of Life , Brain/pathology , Brain/surgery , Neurosurgical Procedures/methods , Magnetic Resonance Imaging/methods
8.
Eur J Neurosci ; 59(4): 641-661, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38221670

ABSTRACT

Sleep spindles are major oscillatory components of Non-Rapid Eye Movement (NREM) sleep, reflecting hyperpolarization-rebound sequences of thalamocortical neurons. Reports suggest a link between sleep spindles and several forms of high-frequency oscillations which are considered as expressions of pathological off-line neural plasticity in the central nervous system. Here we investigated the relationship between thalamic sleep spindles and ripples in the anterior and mediodorsal nuclei (ANT and MD) of epilepsy patients. Whole-night LFP from the ANT and MD were co-registered with scalp EEG/polysomnography by using externalized leads in 15 epilepsy patients undergoing a Deep Brain Stimulation protocol. Slow (~12 Hz) and fast (~14 Hz) sleep spindles were present in the human ANT and MD and roughly, 20% of them were associated with ripples. Ripple-associated thalamic sleep spindles were characterized by longer duration and exceeded pure spindles in terms of spindle power as indicated by time-frequency analysis. Furthermore, ripple amplitude was modulated by the phase of sleep spindles within both thalamic nuclei. No signs of pathological processes were correlated with measures of ripple and spindle association, furthermore, the density of ripple-associated sleep spindles in the ANT showed a positive correlation with verbal comprehension. Our findings indicate the involvement of the human thalamus in coalescent spindle-ripple oscillations of NREM sleep.


Subject(s)
Epilepsy , Sleep , Humans , Sleep/physiology , Thalamus/physiology , Electroencephalography , Mediodorsal Thalamic Nucleus
9.
Brain Stimul ; 17(1): 39-48, 2024.
Article in English | MEDLINE | ID: mdl-38145752

ABSTRACT

BACKGROUND: Information transmission into the human nervous system is the basis for a variety of prosthetic applications. Spinal cord stimulation (SCS) systems are widely available, have a well documented safety record, can be implanted minimally invasively, and are known to stimulate afferent pathways. Nonetheless, SCS devices are not yet used for computer-brain-interfacing applications. OBJECTIVE: Here we aimed to establish computer-to-brain communication via medical SCS implants in a group of 20 individuals who had been operated for the treatment of chronic neuropathic pain. METHODS: In the initial phase, we conducted interface calibration with the aim of determining personalized stimulation settings that yielded distinct and reproducible sensations. These settings were subsequently utilized to generate inputs for a range of behavioral tasks. We evaluated the required calibration time, task training duration, and the subsequent performance in each task. RESULTS: We could establish a stable spinal computer-brain interface in 18 of the 20 participants. Each of the 18 then performed one or more of the following tasks: A rhythm-discrimination task (n = 13), a Morse-decoding task (n = 3), and/or two different balance/body-posture tasks (n = 18; n = 5). The median calibration time was 79 min. The median training time for learning to use the interface in a subsequent task was 1:40 min. In each task, every participant demonstrated successful performance, surpassing chance levels. CONCLUSION: The results constitute the first proof-of-concept of a general purpose computer-brain interface paradigm that could be deployed on present-day medical SCS platforms.


Subject(s)
Brain-Computer Interfaces , Humans , Brain , Computers
10.
Front Immunol ; 14: 1168635, 2023.
Article in English | MEDLINE | ID: mdl-37215144

ABSTRACT

Introduction: Macrophages significantly contribute to the regulation of vessel formation under physiological and pathological conditions. Although the angiogenesis-regulating role of alternatively polarized macrophages is quite controversial, a growing number of evidence shows that they can participate in the later phases of angiogenesis, including vessel sprouting and remodeling or regression. However, the epigenetic and transcriptional regulatory mechanisms controlling this angiogenesis-modulating program are not fully understood. Results: Here we show that IL-4 can coordinately regulate the VEGFA-VEGFR1 (FLT1) axis via simultaneously inhibiting the proangiogenic Vegfa and inducing the antiangiogenic Flt1 expression in murine bone marrow-derived macrophages, which leads to the attenuated proangiogenic activity of alternatively polarized macrophages. The IL-4-activated STAT6 and IL-4-STAT6 signaling pathway-induced EGR2 transcription factors play a direct role in the transcriptional regulation of the Vegfa-Flt1 axis. We demonstrated that this phenomenon is not restricted to the murine bone marrow-derived macrophages, but can also be observed in different murine tissue-resident macrophages ex vivo and parasites-elicited macrophages in vivo with minor cell type-specific differences. Furthermore, IL-4 exposure can modulate the hypoxic response of genes in both murine and human macrophages leading to a blunted Vegfa/VEGFA and synergistically induced Flt1/FLT1 expression. Discussion: Our findings establish that the IL-4-activated epigenetic and transcriptional program can determine angiogenesis-regulating properties in alternatively polarized macrophages under normoxic and hypoxic conditions.


Subject(s)
Interleukin-4 , Vascular Endothelial Growth Factor A , Humans , Mice , Animals , Interleukin-4/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Macrophages/metabolism , Signal Transduction , Gene Expression Regulation , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism
11.
Front Immunol ; 14: 1139204, 2023.
Article in English | MEDLINE | ID: mdl-36936920

ABSTRACT

Macrophage polarization is a process whereby macrophages develop a specific phenotype and functional response to different pathophysiological stimuli and tissue environments. In general, two main macrophage phenotypes have been identified: inflammatory (M1) and alternatively activated (M2) macrophages characterized specifically by IL-1ß and IL-10 production, respectively. In the cardiotoxin-induced skeletal muscle injury model bone marrow-derived macrophages (BMDMs) play the central role in regulating tissue repair. Bone marrow-derived monocytes arriving at the site of injury differentiate first to M1 BMDMs that clear cell debris and trigger proliferation and differentiation of the muscle stem cells, while during the process of efferocytosis they change their phenotype to M2 to drive resolution of inflammation and tissue repair. The M2 population is formed from at least three distinct subsets: antigen presenting, resolution-related and growth factor producing macrophages, the latest ones expressing the transcription factor PPARγ. Nuclear receptor subfamily 4 group A member 1 (NR4A1; also termed Nur77) transcription factor is expressed as an early response gene, and has been shown to suppress the expression of pro-inflammatory genes during efferocytosis. Here we demonstrate that (1) Nur77 null BMDMs are characterized by elevated expression of PPARγ resulting in enhanced efferocytosis capacity; (2) Nur77 and PPARγ regulate transcription in different subsets of M2 skeletal muscle macrophages during muscle repair; (3) the loss of Nur77 prolongs M1 polarization characterized by increased and prolonged production of IL-1ß by the resolution-related macrophages normally expressing Nur77; whereas, in contrast, (4) it promotes M2 polarization detected via the increased number of IL-10 producing CD206+ macrophages generated from the PPARγ-expressing subset.


Subject(s)
Interleukin-10 , Nuclear Receptor Subfamily 4, Group A, Member 1 , PPAR gamma , Humans , Inflammation/metabolism , Interleukin-10/metabolism , Macrophages/metabolism , PPAR gamma/metabolism , Transcription Factors/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
12.
Clin Neurophysiol ; 147: 17-30, 2023 03.
Article in English | MEDLINE | ID: mdl-36630886

ABSTRACT

OBJECTIVE: Heart rate variability (HRV) changes were investigated by several studies after resective epilepsy surgery/vagus nerve stimulation. We examined anterior thalamic nucleus (ANT)-deep brain stimulation (DBS) effects on HRV parameters. METHODS: We retrospectively analyzed 30 drug-resistant epilepsy patients' medical record data and collected electrocardiographic epochs recorded during video- electroencephalography monitoring sessions while awake and during N1- or N2-stage sleep pre-DBS implantation surgery, post-surgery but pre-stimulation, and after stimulation began. RESULTS: The mean square root of the mean squared differences between successive RR intervals and RR interval standard deviation values differed significantly (p < 0.05) among time-points, showing increased HRV post-surgery. High (0.15-0.4 Hz) and very low frequency (<0.04 Hz) increased, while low frequency (0.04-0.15 Hz) and the LF/HF ratio while awake decreased, suggesting improved autonomic regulation post-surgery. Change of effect size was larger in patients where both activated contacts were located in the ANT than in those where only one or none of the contacts hit the ANT. CONCLUSIONS: In patients with drug-resistant epilepsy, ANT-DBS might positively influence autonomic regulation, as reflected by increased HRV. SIGNIFICANCE: To gain a more comprehensive outcome estimation after DBS implantation, we suggest including HRV measures with seizure count in the post-surgery follow-up protocol.


Subject(s)
Anterior Thalamic Nuclei , Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Humans , Heart Rate/physiology , Retrospective Studies , Deep Brain Stimulation/methods , Epilepsy/therapy , Arrhythmias, Cardiac
13.
J Biol Chem ; 299(1): 102746, 2023 01.
Article in English | MEDLINE | ID: mdl-36436565

ABSTRACT

Retinoid X receptors (RXRs) are nuclear transcription factors that partner with other nuclear receptors to regulate numerous physiological processes. Although RXR represents a valid therapeutic target, only a few RXR-specific ligands (rexinoids) have been identified, in part due to the lack of clarity on how rexinoids selectively modulate RXR response. Previously, we showed that rexinoid UAB30 potentiates all-trans-retinoic acid (ATRA) signaling in human keratinocytes, in part by stimulating ATRA biosynthesis. Here, we examined the mechanism of action of next-generation rexinoids UAB110 and UAB111 that are more potent in vitro than UAB30 and the FDA-approved Targretin. Both UAB110 and UAB111 enhanced ATRA signaling in human organotypic epithelium at a 50-fold lower concentration than UAB30. This was consistent with the 2- to 5- fold greater increase in ATRA in organotypic epidermis treated with UAB110/111 versus UAB30. Furthermore, at 0.2 µM, UAB110/111 increased the expression of ATRA genes up to 16-fold stronger than Targretin. The less toxic and more potent UAB110 also induced more changes in differential gene expression than Targretin. Additionally, our hydrogen deuterium exchange mass spectrometry analysis showed that both ligands reduced the dynamics of the ligand-binding pocket but also induced unique dynamic responses that were indicative of higher affinity binding relative to UAB30, especially for Helix 3. UAB110 binding also showed increased dynamics towards the dimer interface through the Helix 8 and Helix 9 regions. These data suggest that UAB110 and UAB111 are potent activators of RXR-RAR signaling pathways but accomplish activation through different molecular responses to ligand binding.


Subject(s)
Tetrahydronaphthalenes , Tretinoin , Humans , Retinoid X Receptors/metabolism , Bexarotene , Ligands , Tetrahydronaphthalenes/pharmacology , Tretinoin/pharmacology , Tretinoin/metabolism , Epidermis/metabolism
14.
Int J Mol Sci ; 25(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38203607

ABSTRACT

The genome of human adipose-derived stem cells (ADSCs) from abdominal and gluteofemoral adipose tissue depots are maintained in depot-specific stable epigenetic conformations that influence cell-autonomous gene expression patterns and drive unique depot-specific functions. The traditional approach to explore tissue-specific transcriptional regulation has been to correlate differential gene expression to the nearest-neighbor linear-distance regulatory region defined by associated chromatin features including open chromatin status, histone modifications, and DNA methylation. This has provided important information; nonetheless, the approach is limited because of the known organization of eukaryotic chromatin into a topologically constrained three-dimensional network. This network positions distal regulatory elements in spatial proximity with gene promoters which are not predictable based on linear genomic distance. In this work, we capture long-range chromatin interactions using HiChIP to identify remote genomic regions that influence the differential regulation of depot-specific genes in ADSCs isolated from different adipose depots. By integrating these data with RNA-seq results and histone modifications identified by ChIP-seq, we uncovered distal regulatory elements that influence depot-specific gene expression in ADSCs. Interestingly, a subset of the HiChIP-defined chromatin loops also provide previously unknown connections between waist-to-hip ratio GWAS variants with genes that are known to significantly influence ADSC differentiation and adipocyte function.


Subject(s)
Adipocytes , Ascomycota , Humans , Promoter Regions, Genetic , Adipose Tissue , Chromatin/genetics , Stem Cells
15.
Cells ; 13(1)2023 12 30.
Article in English | MEDLINE | ID: mdl-38201289

ABSTRACT

Determining the mechanism driving body fat distribution will provide insights into obesity-related health risks. We used functional genomics tools to profile the epigenomic landscape to help infer the differential transcriptional potential of apple- and pear-shaped women's subcutaneous adipose-derived stem cells (ADSCs). We found that CCCTC-binding factor (CTCF) expression and its chromatin binding were increased in ADSCs from pear donors compared to those from apple donors. Interestingly, the pear enriched CTCF binding sites were located predominantly at the active transcription start sites (TSSs) of genes with active histone marks and YY1 motifs and were also associated with pear enriched RNAPII binding. In contrast, apple enriched CTCF binding sites were mainly found at intergenic regions and when identified at TSS, they were enriched with the bivalent chromatin signatures. Altogether, we provide evidence that CTCF plays an important role in differential regulation of subcutaneous ADSCs gene expression and may influence the development of apple vs. pear body shape.


Subject(s)
Gene Expression Regulation , Transcription Factors , Female , Humans , CCCTC-Binding Factor , Chromatin , Subcutaneous Fat
16.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36323312

ABSTRACT

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Subject(s)
Interleukin-4 , Lipopolysaccharides , Mice , Animals , Interleukin-4/metabolism , Lipopolysaccharides/metabolism , Ligands , Epigenomics , Macrophages/metabolism , Toll-Like Receptors/metabolism , Epigenesis, Genetic , NF-kappa B/metabolism
17.
Front Neurol ; 13: 917187, 2022.
Article in English | MEDLINE | ID: mdl-36226087

ABSTRACT

We investigated the effect of deep brain stimulation on dynamic balance during gait in Parkinson's disease with motion sensor measurements and predicted their values from disease-related factors. We recruited twenty patients with Parkinson's disease treated with bilateral subthalamic stimulation for at least 12 months and 24 healthy controls. Six monitors with three-dimensional gyroscopes and accelerometers were placed on the chest, the lumbar region, the two wrists, and the shins. Patients performed the instrumented Timed Up and Go test in stimulation OFF, stimulation ON, and right- and left-sided stimulation ON conditions. Gait parameters and dynamic balance parameters such as double support, peak turn velocity, and the trunk's range of motion and velocity in three dimensions were analyzed. Age, disease duration, the time elapsed after implantation, the Hoehn-Yahr stage before and after the operation, the levodopa, and stimulation responsiveness were reported. We individually calculated the distance values of stimulation locations from the subthalamic motor center in three dimensions. Sway values of static balance were collected. We compared the gait parameters in the OFF and stimulation ON states and controls. With cluster analysis and a machine-learning-based multiple regression method, we explored the predictive clinical factors for each dynamic balance parameter (with age as a confounder). The arm movements improved the most among gait parameters due to stimulation and the horizontal and sagittal trunk movements. Double support did not change after switching on the stimulation on the group level and did not differ from control values. Individual changes in double support and horizontal range of trunk motion due to stimulation could be predicted from the most disease-related factors and the severity of the disease; the latter also from the stimulation-related changes in the static balance parameters. Physiotherapy should focus on double support and horizontal trunk movements when treating patients with subthalamic deep brain stimulation.

18.
Genes Dev ; 36(9-10): 566-581, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35618313

ABSTRACT

Accumulation of fat above the waist is an important risk factor in developing obesity-related comorbidities independently of BMI or total fat mass. Deciphering the gene regulatory programs of the adipose tissue precursor cells within upper body or abdominal (ABD) and lower body or gluteofemoral (GF) depots is important to understand their differential capacity for lipid accumulation, maturation, and disease risk. Previous studies identified the HOX transcript antisense intergenic RNA (HOTAIR) as a GF-specific lncRNA; however, its role in adipose tissue biology is still unclear. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, we found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis. We further demonstrate a direct interaction between HOTAIR and genes with high RNAPII binding in their gene bodies, especially at their 3' ends or transcription end sites. Computational analysis suggests HOTAIR binds preferentially to the 3' ends of genes containing predicted strong RNA-RNA interactions with HOTAIR. Together, these results reveal a unique function for HOTAIR in hASC depot-specific regulation of gene expression.


Subject(s)
RNA, Long Noncoding , Adipocytes/metabolism , Adipose Tissue/metabolism , Gene Expression , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stem Cells/metabolism
19.
JCI Insight ; 7(6)2022 03 22.
Article in English | MEDLINE | ID: mdl-35133983

ABSTRACT

BACKGROUNDPathophysiology of type 1 diabetes (T1D) is illustrated by pancreatic islet infiltration of inflammatory lymphocytes, including CD8+ T cells; however, the molecular factors mediating their recruitment remain unknown. We hypothesized that single-cell RNA-sequencing (scRNA-Seq) analysis of immune cell populations isolated from islets of NOD mice captured gene expression dynamics providing critical insight into autoimmune diabetes pathogenesis.METHODSPancreatic sections from human donors were investigated, including individuals with T1D, autoantibody-positive (aAb+) individuals, and individuals without diabetes who served as controls. IHC was performed to assess islet hormones and both novel and canonical immune cell markers that were identified from unbiased, state-of-the-art workflows after reanalyzing murine scRNA-Seq data sets.RESULTSComputational workflows identified cell adhesion molecule 1-mediated (Cadm1-mediated) homotypic binding among the most important intercellular interactions among all cell clusters, as well as Cadm1 enrichment in macrophages and DCs from pancreata of NOD mice. Immunostaining of human pancreata revealed an increased number of CADM1+glucagon+ cells adjacent to CD8+ T cells in sections from T1D and aAb+ donors compared with individuals without diabetes. Numbers of CADM1+CD68+ peri-islet myeloid cells adjacent to CD8+ T cells were also increased in pancreatic sections from both T1D and aAb+ donors compared with individuals without diabetes.CONCLUSIONIncreased detection of CADM1+ cells adjacent to CD8+ T cells in pancreatic sections of individuals with T1D and those who were aAb+ validated workflows and indicated CADM1-mediated intercellular contact may facilitate islet infiltration of cytotoxic T lymphocytes and serve as a potential therapeutic target for preventing T1D pathogenesis.FUNDINGThe Johns Hopkins All Children's Foundation Institutional Research Grant Program, the National Natural Science Foundation of China (grant 82071326), and the Deutsche Forschungsgemeinschaft (grants 431549029-SFB1451, EXC2030-390661388, and 411422114-GRK2550).


Subject(s)
Cell Adhesion Molecule-1 , Diabetes Mellitus, Type 1 , Islets of Langerhans , Animals , Cell Adhesion Molecule-1/metabolism , Cell Communication , Glucagon-Secreting Cells/metabolism , Humans , Islets of Langerhans/metabolism , Mice , Mice, Inbred NOD
20.
PLoS One ; 17(2): e0264114, 2022.
Article in English | MEDLINE | ID: mdl-35196348

ABSTRACT

BACKGROUND: Balance impairment in Parkinson's disease is multifactorial and its changes due to subthalamic stimulation vary in different studies. OBJECTIVE: We aimed to analyze the combination of predictive clinical factors of balance impairment in patients with Parkinson's disease treated with bilateral subthalamic stimulation for at least one year. METHODS: We recruited 24 patients with Parkinson's disease treated with bilateral subthalamic stimulation and 24 healthy controls. They wore an Opal monitor (APDM Inc.) consisting of three-dimensional gyroscopes and accelerometers in the lumbar region. We investigated four stimulation conditions (bilateral stimulation OFF, bilateral stimulation ON, and unilateral right- and left-sided stimulation ON) with four tests: stance on a plain ground with eyes open and closed, stance on a foam platform with eyes open and closed. Age, disease duration, the time elapsed after implantation, levodopa, and stimulation responsiveness were analyzed. The distance of stimulation location from the subthalamic motor center was calculated individually in each plane of the three dimensions. We analyzed the sway values in the four stimulation conditions in the patient group and compared them with the control values. We explored factor combinations (with age as confounder) in the patient group predictive for imbalance with cluster analysis and a machine-learning-based multiple regression method. RESULTS: Sway combined from the four tasks did not differ in the patients and controls on a group level. The combination of the disease duration, the preoperative levodopa responsiveness, and the stimulation responsiveness predicted individual stimulation-induced static imbalance. The more affected patients had more severe motor symptoms; primarily, the proprioceptive followed by visual sensory feedback loss provoked imbalance in them when switching on the stimulation. CONCLUSIONS: The duration of the disease, the severity of motor symptoms, the levodopa responsiveness, and additional sensory deficits should be carefully considered during preoperative evaluation to predict subthalamic stimulation-induced imbalance in Parkinson's disease.


Subject(s)
Deep Brain Stimulation , Parkinson Disease/physiopathology , Postural Balance , Adult , Aged , Female , Humans , Male , Middle Aged , Parkinson Disease/therapy , Thalamus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL