Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 12(11): 2015-2028, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32790864

ABSTRACT

Placental mammals present 180 million-year-old Y chromosomes that have retained a handful of dosage-sensitive genes. However, the expression evolution of Y-linked genes across placental groups has remained largely unexplored. Here, we expanded the number of Y gametolog sequences by analyzing ten additional species from previously unexplored groups. We detected seven remarkably conserved genes across 25 placental species with known Y repertoires. We then used RNA-seq data from 17 placental mammals to unveil the expression evolution of XY gametologs. We found that Y gametologs followed, on average, a 3-fold expression loss and that X gametologs also experienced some expression reduction, particularly in primates. Y gametologs gained testis specificity through an accelerated expression decay in somatic tissues. Moreover, despite the substantial expression decay of Y genes, the combined expression of XY gametologs in males is higher than that of both X gametologs in females. Finally, our work describes several features of the Y chromosome in the last common mammalian ancestor.


Subject(s)
Biological Evolution , Eutheria/genetics , Gene Expression , Genes, X-Linked , Genes, Y-Linked , Animals , Base Sequence , Conserved Sequence , Dosage Compensation, Genetic , Female , Humans , Male , Organ Specificity
2.
Nature ; 571(7766): 505-509, 2019 07.
Article in English | MEDLINE | ID: mdl-31243369

ABSTRACT

The evolution of gene expression in mammalian organ development remains largely uncharacterized. Here we report the transcriptomes of seven organs (cerebrum, cerebellum, heart, kidney, liver, ovary and testis) across developmental time points from early organogenesis to adulthood for human, rhesus macaque, mouse, rat, rabbit, opossum and chicken. Comparisons of gene expression patterns identified correspondences of developmental stages across species, and differences in the timing of key events during the development of the gonads. We found that the breadth of gene expression and the extent of purifying selection gradually decrease during development, whereas the amount of positive selection and expression of new genes increase. We identified differences in the temporal trajectories of expression of individual genes across species, with brain tissues showing the smallest percentage of trajectory changes, and the liver and testis showing the largest. Our work provides a resource of developmental transcriptomes of seven organs across seven species, and comparative analyses that characterize the development and evolution of mammalian organs.


Subject(s)
Gene Expression Regulation, Developmental , Organogenesis/genetics , Transcriptome/genetics , Animals , Biological Evolution , Chickens/genetics , Female , Humans , Macaca mulatta/genetics , Male , Mice , Opossums/genetics , Rabbits , Rats
3.
Nat Commun ; 9(1): 4066, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30287902

ABSTRACT

Promoters and enhancers-key controllers of gene expression-have long been distinguished from each other based on their function. However, recent work suggested that common architectural and functional features might have facilitated the conversion of one type of element into the other during evolution. Here, based on cross-mammalian analyses of epigenome and transcriptome data, we provide support for this hypothesis by detecting 445 regulatory elements with signatures of activity turnover (termed P/E elements). Most events represent transformations of putative ancestral enhancers into promoters, leading to the emergence of species-specific transcribed loci or 5' exons. Distinct GC sequence compositions and stabilizing 5' splicing (U1) regulatory motif patterns may have predisposed P/E elements to regulatory repurposing, and changes in the U1 and polyadenylation signal densities and distributions likely drove the evolutionary activity switches. Our work suggests that regulatory repurposing facilitated regulatory innovation and the origination of new genes and exons during evolution.


Subject(s)
Enhancer Elements, Genetic , Evolution, Molecular , Primates/genetics , Promoter Regions, Genetic , Rodentia/genetics , Animals
4.
Genome Res ; 27(12): 1974-1987, 2017 12.
Article in English | MEDLINE | ID: mdl-29133310

ABSTRACT

Sex chromosomes differentiated from different ancestral autosomes in various vertebrate lineages. Here, we trace the functional evolution of the XY Chromosomes of the green anole lizard (Anolis carolinensis), on the basis of extensive high-throughput genome, transcriptome and histone modification sequencing data and revisit dosage compensation evolution in representative mammals and birds with substantial new expression data. Our analyses show that Anolis sex chromosomes represent an ancient XY system that originated at least ≈160 million years ago in the ancestor of Iguania lizards, shortly after the separation from the snake lineage. The age of this system approximately coincides with the ages of the avian and two mammalian sex chromosomes systems. To compensate for the almost complete Y Chromosome degeneration, X-linked genes have become twofold up-regulated, restoring ancestral expression levels. The highly efficient dosage compensation mechanism of Anolis represents the only vertebrate case identified so far to fully support Ohno's original dosage compensation hypothesis. Further analyses reveal that X up-regulation occurs only in males and is mediated by a male-specific chromatin machinery that leads to global hyperacetylation of histone H4 at lysine 16 specifically on the X Chromosome. The green anole dosage compensation mechanism is highly reminiscent of that of the fruit fly, Drosophila melanogaster Altogether, our work unveils the convergent emergence of a Drosophila-like dosage compensation mechanism in an ancient reptilian sex chromosome system and highlights that the evolutionary pressures imposed by sex chromosome dosage reductions in different amniotes were resolved in fundamentally different ways.


Subject(s)
Dosage Compensation, Genetic , Drosophila/genetics , Evolution, Molecular , Lizards/genetics , Animals , Epigenesis, Genetic , Female , Genome , Humans , Male , Sex Determination Processes , Transcriptome , X Chromosome , Y Chromosome
5.
Genome Res ; 27(12): 1961-1973, 2017 12.
Article in English | MEDLINE | ID: mdl-29079676

ABSTRACT

Sexual dimorphism depends on sex-biased gene expression, but the contributions of microRNAs (miRNAs) have not been globally assessed. We therefore produced an extensive small RNA sequencing data set to analyze male and female miRNA expression profiles in mouse, opossum, and chicken. Our analyses uncovered numerous cases of somatic sex-biased miRNA expression, with the largest proportion found in the mouse heart and liver. Sex-biased expression is explained by miRNA-specific regulation, including sex-biased chromatin accessibility at promoters, rather than piggybacking of intronic miRNAs on sex-biased protein-coding genes. In mouse, but not opossum and chicken, sex bias is coordinated across tissues such that autosomal testis-biased miRNAs tend to be somatically male-biased, whereas autosomal ovary-biased miRNAs are female-biased, possibly due to broad hormonal control. In chicken, which has a Z/W sex chromosome system, expression output of genes on the Z Chromosome is expected to be male-biased, since there is no global dosage compensation mechanism that restores expression in ZW females after almost all genes on the W Chromosome decayed. Nevertheless, we found that the dominant liver miRNA, miR-122-5p, is Z-linked but expressed in an unbiased manner, due to the unusual retention of a W-linked copy. Another Z-linked miRNA, the male-biased miR-2954-3p, shows conserved preference for dosage-sensitive genes on the Z Chromosome, based on computational and experimental data from chicken and zebra finch, and acts to equalize male-to-female expression ratios of its targets. Unexpectedly, our findings thus establish miRNA regulation as a novel gene-specific dosage compensation mechanism.


Subject(s)
Chickens/genetics , Dosage Compensation, Genetic/genetics , MicroRNAs/genetics , Monodelphis/genetics , Sex Characteristics , Animals , Datasets as Topic , Female , Finches/genetics , Gene Expression Profiling , Male , Mice , MicroRNAs/biosynthesis , Proteins/genetics , Regulatory Sequences, Nucleic Acid
6.
Genome Biol ; 15(6): R83, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24964909

ABSTRACT

BACKGROUND: Mammalian microRNAs (miRNAs) are sometimes subject to adenosine-to-inosine RNA editing, which can lead to dramatic changes in miRNA target specificity or expression levels. However, although a few miRNAs are known to be edited at identical positions in human and mouse, the evolution of miRNA editing has not been investigated in detail. In this study, we identify conserved miRNA editing events in a range of mammalian and non-mammalian species. RESULTS: We demonstrate deep conservation of several site-specific miRNA editing events, including two that date back to the common ancestor of mammals and bony fishes some 450 million years ago. We also find evidence of a recent expansion of an edited miRNA family in placental mammals and show that editing of these miRNAs is associated with changes in target mRNA expression during primate development and aging. While global patterns of miRNA editing tend to be conserved across species, we observe substantial variation in editing frequencies depending on tissue, age and disease state: editing is more frequent in neural tissues compared to heart, kidney and testis; in older compared to younger individuals; and in samples from healthy tissues compared to tumors, which together suggests that miRNA editing might be associated with a reduced rate of cell proliferation. CONCLUSIONS: Our results show that site-specific miRNA editing is an evolutionarily conserved mechanism, which increases the functional diversity of mammalian miRNA transcriptomes. Furthermore, we find that although miRNA editing is rare compared to editing of long RNAs, miRNAs are greatly overrepresented among conserved editing targets.


Subject(s)
MicroRNAs/genetics , RNA Editing , Aging/genetics , Animals , Base Sequence , Chickens , Evolution, Molecular , Humans , Macaca , Mice , MicroRNAs/metabolism , Neoplasms/genetics , Opossums , Organ Specificity , Platypus , RNA Cleavage , RNA Interference , Xenopus laevis
7.
J Biol Chem ; 289(29): 20386-95, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24895132

ABSTRACT

Second messengers such as phosphoinositides and calcium are known to control diverse processes involved in the development of malaria parasites. However, the underlying molecular mechanisms and pathways need to be unraveled, which may be achieved by understanding the regulation of effectors of these second messengers. Calcium-dependent protein kinase (CDPK) family members regulate diverse parasitic processes. Because CDPKs are absent from the host, these kinases are considered as potential drug targets. We have dissected the function of an atypical CDPK from Plasmodium falciparum, PfCDPK7. The domain architecture of PfCDPK7 is very different from that of other CDPKs; it has a pleckstrin homology domain adjacent to the kinase domain and two calcium-binding EF-hands at its N terminus. We demonstrate that PfCDPK7 interacts with PI(4,5)P2 via its pleckstrin homology domain, which may guide its subcellular localization. Disruption of PfCDPK7 caused a marked reduction in the growth of the blood stage parasites, as maturation of rings to trophozoites was markedly stalled. In addition, parasite proliferation was significantly attenuated. These findings shed light on an important role for PfCDPK7 in the erythrocytic asexual cycle of malaria parasites.


Subject(s)
Plasmodium falciparum/enzymology , Plasmodium falciparum/growth & development , Protein Kinases/metabolism , Protozoan Proteins/metabolism , Animals , Animals, Genetically Modified , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gene Knockout Techniques , Genes, Protozoan , Phosphatidylinositol 4,5-Diphosphate/metabolism , Plasmodium falciparum/genetics , Protein Interaction Domains and Motifs , Protein Kinases/chemistry , Protein Kinases/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Second Messenger Systems
8.
J Infect Dis ; 208(3): 468-78, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23599312

ABSTRACT

BACKGROUND: The mechanism of action of artemisinins against malaria is unclear, despite their widespread use in combination therapies and the emergence of resistance. RESULTS: Here, we report expression of PfATP6 (a SERCA pump) in yeast and demonstrate its inhibition by artemisinins. Mutations in PfATP6 identified in field isolates (such as S769N) and in laboratory clones (such as L263E) decrease susceptibility to artemisinins, whereas they increase susceptibility to unrelated inhibitors such as cyclopiazonic acid. As predicted from the yeast model, Plasmodium falciparum with the L263E mutation is also more susceptible to cyclopiazonic acid. An inability to knockout parasite SERCA pumps provides genetic evidence that they are essential in asexual stages of development. Thaperoxides are a new class of potent antimalarial designed to act by inhibiting PfATP6. Results in yeast confirm this inhibition. CONCLUSIONS: The identification of inhibitors effective against mutated PfATP6 suggests ways in which artemisinin resistance may be overcome.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Calcium-Transporting ATPases/genetics , Drug Resistance , Plasmodium falciparum/genetics , Polymorphism, Genetic , Gene Expression , Humans , Parasitic Sensitivity Tests/methods , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics
9.
Nat Commun ; 2: 565, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22127061

ABSTRACT

The role of protein phosphorylation in the life cycle of malaria parasites is slowly emerging. Here we combine global phospho-proteomic analysis with kinome-wide reverse genetics to assess the importance of protein phosphorylation in Plasmodium falciparum asexual proliferation. We identify 1177 phosphorylation sites on 650 parasite proteins that are involved in a wide range of general cellular activities such as DNA synthesis, transcription and metabolism as well as key parasite processes such as invasion and cyto-adherence. Several parasite protein kinases are themselves phosphorylated on putative regulatory residues, including tyrosines in the activation loop of PfGSK3 and PfCLK3; we show that phosphorylation of PfCLK3 Y526 is essential for full kinase activity. A kinome-wide reverse genetics strategy identified 36 parasite kinases as likely essential for erythrocytic schizogony. These studies not only reveal processes that are regulated by protein phosphorylation, but also define potential anti-malarial drug targets within the parasite kinome.


Subject(s)
Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Proteomics/methods , Protozoan Proteins/metabolism , Animals , Humans , Phosphorylation
10.
J Cell Biochem ; 112(5): 1295-310, 2011 May.
Article in English | MEDLINE | ID: mdl-21312235

ABSTRACT

The kinome of the human malaria parasite Plasmodium falciparum comprises representatives of most eukaryotic protein kinase groups, including kinases which regulate proliferation and differentiation processes. Despite extensive research on most plasmodial enzymes, little information is available regarding the four identified members of the cyclin-dependent kinase-like kinase (CLK) family. In other eukaryotes, CLKs regulate mRNA splicing through phosphorylation of Serine/Arginine-rich proteins. Here, we investigate two of the PfCLKs, the Lammer kinase homolog PfCLK-1, and PfCLK-2. Both PfCLKs show homology with the yeast Serine/Arginine protein kinase Sky1p and are transcribed throughout the asexual blood stages and in gametocytes. PfCLK-1/Lammer possesses two nuclear localization signal sites and PfCLK-2 possesses one of these signal sites upstream of the C-terminal catalytic domains. Indirect immunofluorescence, Western blot, and electron microscopy data confirm that the kinases are primarily localized in the parasite nucleus, and PfCLK-2 is further present in the cytoplasm. The two kinases are important for completion of the asexual replication cycle of P. falciparum, as demonstrated by reverse genetics approaches. In vitro kinase assays show substrate phosphorylation by the PfCLKs, including the Sky1p substrate, splicing factor Npl3p, and the plasmodial alternative splicing factor PfASF-1. Mass spectrometric analysis of co-immunoprecipitated proteins indicates assembly of the two PfCLKs with proteins with predicted nuclease, phosphatase, or helicase functions. Our data indicate a crucial role of PfCLKs for malaria blood stage parasites, presumably by participating in gene regulation through the post-transcriptional modification of mRNA.


Subject(s)
Erythrocytes/parasitology , Malaria/parasitology , Plasmodium falciparum/enzymology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Animals , Catalytic Domain , Cell Nucleus/enzymology , Humans , Mice , Phosphorylation , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , RNA Splicing
11.
Eukaryot Cell ; 9(6): 952-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20305001

ABSTRACT

Cyclin-dependent protein kinases (CDKs) are key regulators of the eukaryotic cell cycle and of the eukaryotic transcription machinery. Here we report the characterization of Pfcrk-3 (Plasmodium falciparum CDK-related kinase 3; PlasmoDB identifier PFD0740w), an unusually large CDK-related protein whose kinase domain displays maximal homology to those CDKs which, in other eukaryotes, are involved in the control of transcription. The closest enzyme in Saccharomyces cerevisiae is BUR1 (bypass upstream activating sequence requirement 1), known to control gene expression through interaction with chromatin modification enzymes. Consistent with this, immunofluorescence data show that Pfcrk-3 colocalizes with histones. We show that recombinant Pfcrk-3 associates with histone H1 kinase activity in parasite extracts and that this association is detectable even if the catalytic domain of Pfcrk-3 is rendered inactive by site-directed mutagenesis, indicating that Pfcrk-3 is part of a complex that includes other protein kinases. Immunoprecipitates obtained from extracts of transgenic parasites expressing hemagglutinin (HA)-tagged Pfcrk-3 by using an anti-HA antibody displayed both protein kinase and histone deacetylase activities. Reverse genetics data show that the pfcrk-3 locus can be targeted only if the genetic modification does not cause a loss of function. Taken together, our data strongly suggest that Pfcrk-3 fulfils a crucial role in the intraerythrocytic development of P. falciparum, presumably through chromatin modification-dependent regulation of gene expression.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Histone Deacetylases/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Cyclin-Dependent Kinases/genetics , Histone Deacetylases/genetics , Humans , Models, Genetic , Phylogeny , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Protozoan Proteins/genetics , RNA, Messenger/metabolism , Transfection
12.
Biochim Biophys Acta ; 1804(3): 604-12, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19840874

ABSTRACT

Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases.


Subject(s)
Drug Delivery Systems/methods , Malaria/drug therapy , Plasmodium berghei/enzymology , Plasmodium falciparum/enzymology , Protein Kinase Inhibitors/therapeutic use , Protein Kinases , Protozoan Proteins/antagonists & inhibitors , Animals , Humans , Malaria/enzymology , Protein Kinase Inhibitors/chemistry
13.
Mol Microbiol ; 65(5): 1170-80, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17651389

ABSTRACT

The kinome of the human malaria parasite Plasmodium falciparum includes two genes encoding mitogen-activated protein kinase (MAPK) homologues, pfmap-1 and pfmap-2, but no clear orthologue of the MAPK kinase (MAPKK) family, raising the question of the mode of activation and function of the plasmodial MAPKs. Functional studies in the rodent malaria model Plasmodium berghei recently showed the map-2 gene to be dispensable for asexual growth and gametocytogenesis, but essential for male gametogenesis in the mosquito vector. Here, we demonstrate by using a reverse genetics approach that the map-2 gene is essential for completion of the asexual cycle of P. falciparum, an unexpected result in view of the non-essentiality of the orthologous gene for P. berghei erythrocytic schizogony. This validates Pfmap-2 as a potential target for chemotherapeutic intervention. In contrast, the other P. falciparum MAPK, Pfmap-1, is required neither for in vitro schizogony and gametocytogenesis in erythrocytes, nor for gametogenesis and sporogony in the mosquito vector. However, Pfmap-2 protein levels are elevated in pfmap-1(-) parasites, suggesting that Pfmap-1 fulfils an important function in asexual parasites that necessitates compensatory adaptation in parasites lacking this enzyme.


Subject(s)
Isoenzymes/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Animals , Anopheles/parasitology , Erythrocytes/parasitology , Female , Humans , Isoenzymes/genetics , Malaria, Falciparum , Male , Mitogen-Activated Protein Kinases/genetics , Phenotype , Plasmodium falciparum/physiology , Protozoan Proteins/genetics
14.
Malar J ; 4: 3, 2005 Jan 11.
Article in English | MEDLINE | ID: mdl-15644136

ABSTRACT

BACKGROUND: Most studies on the resistance of mosquitoes to their malaria parasites focus on the response of a mosquito line or colony against a single parasite genotype. In natural situations, however, it may be expected that mosquito-malaria relationships are based, as are many other host-parasite systems, on host genotype by parasite genotype interactions. In such systems, certain hosts are resistant to one subset of the parasite's genotypes, while other hosts are resistant to a different subset. METHODS: To test for genotype by genotype interactions between malaria parasites and their anopheline vectors, different genetic backgrounds (families consisting of the F1 offspring of individual females) of the major African vector Anopheles gambiae were challenged with several isolates of the human malaria parasite Plasmodium falciparum (obtained from naturally infected children in Kenya). RESULTS: Averaged across all parasites, the proportion of infected mosquitoes and the number of oocysts found in their midguts were similar in all mosquito families. Both indices of resistance, however, differed considerably among isolates of the parasite. In particular, no mosquito family was most resistant to all parasites, and no parasite isolate was most infectious to all mosquitoes. CONCLUSIONS: These results suggest that the level of mosquito resistance depends on the interaction between its own and the parasite's genotype. This finding thus emphasizes the need to take into account the range of genetic diversity exhibited by mosquito and malaria field populations in ideas and studies concerning the control of malaria.


Subject(s)
Anopheles/parasitology , Immunity, Innate/genetics , Insect Vectors/parasitology , Plasmodium falciparum/genetics , Analysis of Variance , Animals , Anopheles/genetics , Anopheles/immunology , Chi-Square Distribution , Child , Child, Preschool , Female , Genotype , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Insect Vectors/genetics , Insect Vectors/immunology , Leukocytes/parasitology , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Microsatellite Repeats/genetics , Plasmodium falciparum/classification , Plasmodium falciparum/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...