Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Cancer Res ; 157: 123-155, 2023.
Article in English | MEDLINE | ID: mdl-36725107

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective biomarkers for early detection of PDAC and development of new therapeutic strategies. It has long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, tumor-associated glycans and their cognate glycosylating enzymes have received insufficient attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous cell surface receptors, which collectively impart malignant characteristics typified by enhanced cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further promoting cancer progression. The goal of this review is to summarize the predominant changes in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in cancer therapeutics.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/metabolism , Glycosylation , Polysaccharides/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
2.
Glycobiology ; 32(9): 736-742, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35789385

ABSTRACT

The ST6GAL1 Golgi sialyltransferase is upregulated in many human malignancies, however, detection of ST6GAL1 protein in cancer tissues has been hindered by the prior lack of antibodies. Recently, numerous commercial antibodies for ST6GAL1 have become available, however, many of these do not, in fact, recognize ST6GAL1. Decades ago, the CD75 cell-surface epitope was mistakenly suggested to be the same molecule as ST6GAL1. While this was rapidly disproven, the use of CD75 as a synonym for ST6GAL1 has persisted, particularly by companies selling "ST6GAL1" antibodies. CD75 is reportedly a sialylated epitope which appears to encompass a range of glycan structures and glycan carriers. In this study, we evaluated the LN1 and ZB55 monoclonal antibodies, which are advertised as ST6GAL1 antibodies but were initially developed as CD75-recognizing antibodies (neither was raised against ST6GAL1 as the immunogen). Importantly, the LN1 and ZB55 antibodies have been widely used by investigators, as well as the Human Protein Atlas database, to characterize ST6GAL1 expression. Herein, we used cell and mouse models with controlled expression of ST6GAL1 to compare LN1 and ZB55 with an extensively validated polyclonal antibody to ST6GAL1. We find that LN1 and ZB55 do not recognize ST6GAL1, and furthermore, these 2 antibodies recognize different targets. Additionally, we utilized the well-validated ST6GAL1 antibody to determine that ST6GAL1 is overexpressed in bladder cancer, a finding that contradicts prior studies which employed LN1 to suggest ST6GAL1 is downregulated in bladder cancer. Collectively, our studies underscore the need for careful validation of antibodies purported to recognize ST6GAL1.


Subject(s)
Urinary Bladder Neoplasms , Animals , Antigens, CD/metabolism , Epitopes , Humans , Mice , Polysaccharides , Sialyltransferases/metabolism
3.
Open Access Emerg Med ; 14: 249-272, 2022.
Article in English | MEDLINE | ID: mdl-35669176

ABSTRACT

This study aimed to analyze prehospital Emergency Medical Services (EMS) response to the COVID-19 pandemic in the US through a brief systematic review of available literature in context with international prehospital counterparts. An exploration of the NCBI repository was performed using a search string of relevant keywords which returned n=5128 results; articles that met the inclusion criteria (n=77) were reviewed and analyzed in accordance with PRISMA and PROSPERO recommendations. Methodical quality was assessed using critical appraisal tools, and the Egger's test was used for risk of bias reduction upon linear regression analysis of a funnel plot. Sources of heterogeneity as defined by P < 0.10 or I^2 > 50% were interrogated. Findings were considered within ten domains: structural/systemic; clinical outcomes; clinical assessment; treatment; special populations; dispatch/activation; education; mental health; perspectives/experiences; and transport. Findings suggest, EMS clinicians have likely made significant and unmeasured contributions to care during the pandemic via nontraditional roles, ie, COVID-19 testing and vaccine deployment. EMS plays a critical role in counteracting the COVID-19 pandemic in addition to the worsening opioid epidemic, both of which disproportionately impact patients of color. As such, being uniquely influential on clinical outcomes, these providers may benefit from standardized education on care and access disparities such as racial identity. Access to distance learning continuing education opportunities may increase rates of provider recertification. Additionally, there is a high prevalence of vaccine hesitancy among surveyed nationally registered EMS providers. Continued rigorous investigation on the impact of COVID-19 on EMS systems and personnel is warranted to ensure informed preparation for future pandemic and infectious disease responses.

4.
FASEB J ; 34(2): 3179-3196, 2020 02.
Article in English | MEDLINE | ID: mdl-31916625

ABSTRACT

ISOC is a cation current permeating the ISOC channel. In pulmonary endothelial cells, ISOC activation leads to formation of inter-endothelial cell gaps and barrier disruption. The immunophilin FK506-binding protein 51 (FKBP51), in conjunction with the serine/threonine protein phosphatase 5C (PPP5C), inhibits ISOC . Free PPP5C assumes an autoinhibitory state, which has low "basal" catalytic activity. Several S100 protein family members bind PPP5C increasing PPP5C catalytic activity in vitro. One of these family members, S100A6, exhibits a calcium-dependent translocation to the plasma membrane. The goal of this study was to determine whether S100A6 activates PPP5C in pulmonary endothelial cells and contributes to ISOC inhibition by the PPP5C-FKBP51 axis. We observed that S100A6 activates PPP5C to dephosphorylate tau T231. Following ISOC activation, cytosolic S100A6 translocates to the plasma membrane and interacts with the TRPC4 subunit of the ISOC channel. Global calcium entry and ISOC are decreased by S100A6 in a PPP5C-dependent manner and by FKBP51 in a S100A6-dependent manner. Further, calcium entry-induced endothelial barrier disruption is decreased by S100A6 dependent upon PPP5C, and by FKBP51 dependent upon S100A6. Overall, these data reveal that S100A6 plays a key role in the PPP5C-FKBP51 axis to inhibit ISOC and protect the endothelial barrier against calcium entry-induced disruption.


Subject(s)
Calcium Signaling , Cell Cycle Proteins/metabolism , Endothelial Cells/metabolism , S100 Calcium Binding Protein A6/metabolism , Animals , Cells, Cultured , Endothelium, Vascular/cytology , Lung/blood supply , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Protein Binding , Protein Transport , Rats , TRPC Cation Channels/metabolism , Tacrolimus Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...