Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Genome Biol ; 24(1): 117, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37189164

ABSTRACT

BACKGROUND: The variation in the rate at which humans age may be rooted in early events acting through the genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions enriched for genetically controlled imprinting effects (the typical type of POE) and regions influenced by environmental effects associated with parents (the atypical POE). This part of the methylome is heavily influenced by early events, making it a potential route connecting early exposures, the epigenome, and aging. We aim to test the association of POE-CpGs with early and later exposures and subsequently with health-related phenotypes and adult aging. RESULTS: We perform a phenome-wide association analysis for the POE-influenced methylome using GS:SFHS (Ndiscovery = 5087, Nreplication = 4450). We identify and replicate 92 POE-CpG-phenotype associations. Most of the associations are contributed by the POE-CpGs belonging to the atypical class where the most strongly enriched associations are with aging (DNAmTL acceleration), intelligence, and parental (maternal) smoking exposure phenotypes. A proportion of the atypical POE-CpGs form co-methylation networks (modules) which are associated with these phenotypes, with one of the aging-associated modules displaying increased within-module methylation connectivity with age. The atypical POE-CpGs also display high levels of methylation heterogeneity, fast information loss with age, and a strong correlation with CpGs contained within epigenetic clocks. CONCLUSIONS: These results identify the association between the atypical POE-influenced methylome and aging and provide new evidence for the "early development of origin" hypothesis for aging in humans.


Subject(s)
Aging , Epigenome , Adult , Humans , Aging/genetics , Phenotype , Genomics , Epigenomics , DNA Methylation , CpG Islands , Epigenesis, Genetic
2.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711749

ABSTRACT

Variation in the rate at which humans age may be rooted in early life events acting through genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions either enriched for genetically controlled imprinting effects (the typical type of POE) or atypical POE introduced by environmental effects associated with parents. This part of the methylome is heavily influenced by early life events, making it a potential route connecting early environmental exposures, the epigenome and the rate of aging. Here, we aim to test the association of POE-influenced methylation of CpG dinucleotides (POE-CpG sites) with early and later environmental exposures and subsequently with health-related phenotypes and adult aging phenotypes. We do this by performing phenome-wide association analyses of the POE-influenced methylome using a large family-based population cohort (GS:SFHS, Ndiscovery=5,087, Nreplication=4,450). At the single CpG level, 92 associations of POE-CpGs with phenotypic variation were identified and replicated. Most of the associations were contributed by POE-CpGs belonging to the atypical class and the most strongly enriched associations were with aging (DNAmTL acceleration), intelligence and parental (maternal) smoking exposure phenotypes. We further found that a proportion of the atypical-POE-CpGs formed co-methylation networks (modules) which are associated with these phenotypes, with one of the aging-associated modules displaying increased internal module connectivity (strength of methylation correlation across constituent CpGs) with age. Atypical POE-CpGs also displayed high levels of methylation heterogeneity and epigenetic drift (i.e. information loss with age) and a strong correlation with CpGs contained within epigenetic clocks. These results identified associations between the atypical-POE-influenced methylome and aging and provided new evidence for the "early development of origin" hypothesis for aging in humans.

3.
JAMA Psychiatry ; 79(11): 1110-1117, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36169986

ABSTRACT

Importance: Self-reported trauma exposure has consistently been found to be a risk factor for major depressive disorder (MDD), and several studies have reported interactions with genetic liability. To date, most studies have examined gene-environment interactions with trauma exposure using genome-wide variants (single-nucleotide variations [SNVs]) or polygenic scores, both typically capturing less than 3% of phenotypic risk variance. Objective: To reexamine genome-by-trauma interaction associations using genetic measures using all available genotyped data and thus, maximizing accounted variance. Design, Setting, and Participants: The UK Biobank study was conducted from April 2007 to May 1, 2016 (follow-up mental health questionnaire). The current study used available cross-sectional genomic and trauma exposure data from UK Biobank. Participants who completed the mental health questionnaire and had available genetic, trauma experience, depressive symptoms, and/or neuroticism information were included. Data were analyzed from April 1 to August 30, 2021. Exposures: Trauma and genome-by-trauma exposure interactions. Main Outcomes and Measures: Measures of self-reported depression, neuroticism, and trauma exposure with whole-genome SNV data are available from the UK Biobank study. Here, a mixed-model statistical approach using genetic, trauma exposure, and genome-by-trauma exposure interaction similarity matrices was used to explore sources of variation in depression and neuroticism. Results: Analyses were conducted on 148 129 participants (mean [SD] age, 56 [7] years) of which 76 995 were female (52.0%). The study approach estimated the heritability (SE) of MDD to be approximately 0.160 (0.016). Subtypes of self-reported trauma exposure (catastrophic, adult, childhood, and full trauma) accounted for a significant proportion of the variance of MDD, with heritability (SE) ranging from 0.056 (0.013) to 0.176 (0.025). The proportion of MDD risk variance accounted for by significant genome-by-trauma interaction revealed estimates (SD) ranging from 0.074 (0.006) to 0.201 (0.009). Results from sex-specific analyses found genome-by-trauma interaction variance estimates approximately 5-fold greater for MDD in male participants (0.441 [0.018]) than in female participants (0.086 [0.009]). Conclusions and Relevance: This cross-sectional study used an approach combining all genome-wide SNV data when exploring genome-by-trauma interactions in individuals with MDD; findings suggest that such interactions were associated with depression manifestation. Genome-by-trauma interaction accounts for greater trait variance in male individuals, which points to potential differences in depression etiology between the sexes. The methodology used in this study can be extrapolated to other environmental factors to identify modifiable risk environments and at-risk groups to target with interventions.


Subject(s)
Depressive Disorder, Major , Adult , Male , Humans , Female , Child , Middle Aged , Depressive Disorder, Major/genetics , Depressive Disorder, Major/psychology , Genome-Wide Association Study , Cross-Sectional Studies , Biological Specimen Banks , Depression/genetics , Multifactorial Inheritance/genetics , United Kingdom , Genetic Predisposition to Disease/genetics
4.
Genome Biol ; 23(1): 176, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35996157

ABSTRACT

BACKGROUND: Cross-species comparison of transcriptomes is important for elucidating evolutionary molecular mechanisms underpinning phenotypic variation between and within species, yet to date it has been essentially limited to model organisms with relatively small sample sizes. RESULTS: Here, we systematically analyze and compare 10,830 and 4866 publicly available RNA-seq samples in humans and cattle, respectively, representing 20 common tissues. Focusing on 17,315 orthologous genes, we demonstrate that mean/median gene expression, inter-individual variation of expression, expression quantitative trait loci, and gene co-expression networks are generally conserved between humans and cattle. By examining large-scale genome-wide association studies for 46 human traits (average n = 327,973) and 45 cattle traits (average n = 24,635), we reveal that the heritability of complex traits in both species is significantly more enriched in transcriptionally conserved than diverged genes across tissues. CONCLUSIONS: In summary, our study provides a comprehensive comparison of transcriptomes between humans and cattle, which might help decipher the genetic and evolutionary basis of complex traits in both species.


Subject(s)
Genome-Wide Association Study , Transcriptome , Animals , Cattle/genetics , Humans , Multifactorial Inheritance , Phenotype , Quantitative Trait Loci
5.
Genet Sel Evol ; 54(1): 23, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303797

ABSTRACT

BACKGROUND: Single-step genomic best linear unbiased prediction (ssGBLUP) allows the inclusion of information from genotyped and ungenotyped individuals in a single analysis. This avoids the need to genotype all candidates with the potential benefit of reducing overall costs. The aim of this study was to assess the effect of genotyping strategies, the proportion of genotyped candidates and the genotyping criterion to rank candidates to be genotyped, when using ssGBLUP evaluation. A simulation study was carried out assuming selection over several discrete generations where a proportion of the candidates were genotyped and evaluation was done using ssGBLUP. The scenarios compared were: (i) three genotyping strategies defined by their protocol for choosing candidates to be genotyped (RANDOM: candidates were chosen at random; TOP: candidates with the best genotyping criterion were genotyped; and EXTREME: candidates with the best and worse criterion were genotyped); (ii) eight proportions of genotyped candidates (p); and (iii) two genotyping criteria to rank candidates to be genotyped (candidates' own phenotype or estimated breeding values). The criteria of the comparison were the cumulated gain and reliability of the genomic estimated breeding values (GEBV). RESULTS: The genotyping strategy with the greatest cumulated gain was TOP followed by RANDOM, with EXTREME behaving as RANDOM at low p and as TOP with high p. However, the reliability of GEBV was higher with RANDOM than with TOP. This disparity between the trend of the gain and the reliability is due to the TOP scheme genotyping the candidates with the greater chances of being selected. The extra gain obtained with TOP increases when the accuracy of the selection criterion to rank candidates to be genotyped increases. CONCLUSIONS: The best strategy to maximise genetic gain when only a proportion of the candidates are to be genotyped is TOP, since it prioritises the genotyping of candidates which are more likely to be selected. However, the strategy with the greatest GEBV reliability does not achieve the largest gain, thus reliability cannot be considered as an absolute and sufficient criterion for determining the scheme which maximises genetic gain.


Subject(s)
Genome , Genomics , Genotype , Phenotype , Reproducibility of Results
6.
Aging (Albany NY) ; 14(2): 623-659, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35073279

ABSTRACT

Biological age (BA), a measure of functional capacity and prognostic of health outcomes that discriminates between individuals of the same chronological age (chronAge), has been estimated using a variety of biomarkers. Previous comparative studies have mainly used epigenetic models (clocks), we use ~1000 participants to compare fifteen omics ageing clocks, with correlations of 0.21-0.97 with chronAge, even with substantial sub-setting of biomarkers. These clocks track common aspects of ageing with 95% of the variance in chronAge being shared among clocks. The difference between BA and chronAge - omics clock age acceleration (OCAA) - often associates with health measures. One year's OCAA typically has the same effect on risk factors/10-year disease incidence as 0.09/0.25 years of chronAge. Epigenetic and IgG glycomics clocks appeared to track generalised ageing while others capture specific risks. We conclude BA is measurable and prognostic and that future work should prioritise health outcomes over chronAge.


Subject(s)
Aging , Epigenesis, Genetic , Aging/genetics , Biological Clocks , Biomarkers , DNA Methylation , Epigenomics , Humans
7.
EBioMedicine ; 74: 103730, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34883445

ABSTRACT

BACKGROUND: parent-of-origin effects (POE) play important roles in complex disease and thus understanding their regulation and associated molecular and phenotypic variation are warranted. Previous studies mainly focused on the detection of genomic regions or phenotypes regulated by POE. Understanding whether POE may be modified by environmental or genetic exposures is important for understanding of the source of POE-associated variation, but only a few case studies addressing modifiable POE exist. METHODS: in order to understand this high order of POE regulation, we screened 101 genetic and environmental factors such as 'predicted mRNA expression levels' of DNA methylation/imprinting machinery genes and environmental exposures. POE-mQTL-modifier interaction models were proposed to test the potential of these factors to modify POE at DNA methylation using data from Generation Scotland: The Scottish Family Health Study(N=2315). FINDINGS: a set of vulnerable/modifiable POE-CpGs were identified (modifiable-POE-regulated CpGs, N=3). Four factors, 'lifetime smoking status' and 'predicted mRNA expression levels' of TET2, SIRT1 and KDM1A, were found to significantly modify the POE on the three CpGs in both discovery and replication datasets. We further identified plasma protein and health-related phenotypes associated with the methylation level of one of the identified CpGs. INTERPRETATION: the modifiable POE identified here revealed an important yet indirect path through which genetic background and environmental exposures introduce their effect on DNA methylation, motivating future comprehensive evaluation of the role of these modifiers in complex diseases. FUNDING: NSFC (81971270),H2020-MSCA-ITN(721815), Wellcome (204979/Z/16/Z,104036/Z/14/Z), MRC (MC_UU_00007/10, MC_PC_U127592696), CSO (CZD/16/6,CZB/4/276, CZB/4/710), SFC (HR03006), EUROSPAN (LSHG-CT-2006-018947), BBSRC (BBS/E/D/30002276), SYSU, Arthritis Research UK, NHLBI, NIH.


Subject(s)
DNA Methylation , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Epigenomics/methods , Histone Demethylases/genetics , Sirtuin 1/genetics , CpG Islands , Gene Expression Regulation , Genomic Imprinting , Humans , Life Style , Phenotype , Quantitative Trait Loci
8.
PLoS Genet ; 17(9): e1009750, 2021 09.
Article in English | MEDLINE | ID: mdl-34499657

ABSTRACT

Variation in obesity-related traits has a genetic basis with heritabilities between 40 and 70%. While the global obesity pandemic is usually associated with environmental changes related to lifestyle and socioeconomic changes, most genetic studies do not include all relevant environmental covariates, so the genetic contribution to variation in obesity-related traits cannot be accurately assessed. Some studies have described interactions between a few individual genes linked to obesity and environmental variables but there is no agreement on their total contribution to differences between individuals. Here we compared self-reported smoking data and a methylation-based proxy to explore the effect of smoking and genome-by-smoking interactions on obesity related traits from a genome-wide perspective to estimate the amount of variance they explain. Our results indicate that exploiting omic measures can improve models for complex traits such as obesity and can be used as a substitute for, or jointly with, environmental records to better understand causes of disease.


Subject(s)
Body Mass Index , DNA Methylation , Genome, Human , Smoking/genetics , Humans
10.
Front Genet ; 12: 627989, 2021.
Article in English | MEDLINE | ID: mdl-33613642

ABSTRACT

The ever-growing genome-wide association studies (GWAS) have revealed widespread pleiotropy. To exploit this, various methods that jointly consider associations of a genetic variant with multiple traits have been developed. Most efforts have been made concerning improving GWAS discovery power. However, how to replicate these discovered pleiotropic loci has yet to be discussed thoroughly. Unlike a single-trait scenario, multi-trait replication is not trivial considering the underlying genotype-multi-phenotype map of the associations. Here, we evaluate four methods for replicating multi-trait associations, corresponding to four levels of replication strength. Weak replication cannot justify pleiotropic genetic effects, whereas strong replication using our developed correlation methods can inform consistent pleiotropic genetic effects across the discovery and replication samples. We provide a protocol for replicating multi-trait genetic associations in practice. The described methods are implemented in the free and open-source R package MultiABEL.

11.
Genome Med ; 13(1): 1, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397400

ABSTRACT

BACKGROUND: The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late onset Alzheimer's disease, whilst the ε2 allele confers protection. Previous studies report differential DNA methylation of APOE between ε4 and ε2 carriers, but associations with epigenome-wide methylation have not previously been characterised. METHODS: Using the EPIC array, we investigated epigenome-wide differences in whole blood DNA methylation patterns between Alzheimer's disease-free APOE ε4 (n = 2469) and ε2 (n = 1118) carriers from the two largest single-cohort DNA methylation samples profiled to date. Using a discovery, replication and meta-analysis study design, methylation differences were identified using epigenome-wide association analysis and differentially methylated region (DMR) approaches. Results were explored using pathway and methylation quantitative trait loci (meQTL) analyses. RESULTS: We obtained replicated evidence for DNA methylation differences in a ~ 169 kb region, which encompasses part of APOE and several upstream genes. Meta-analytic approaches identified DNA methylation differences outside of APOE: differentially methylated positions were identified in DHCR24, LDLR and ABCG1 (2.59 × 10-100 ≤ P ≤ 2.44 × 10-8) and DMRs were identified in SREBF2 and LDLR (1.63 × 10-4 ≤ P ≤ 3.01 × 10-2). Pathway and meQTL analyses implicated lipid-related processes and high-density lipoprotein cholesterol was identified as a partial mediator of the methylation differences in ABCG1 and DHCR24. CONCLUSIONS: APOE ε4 vs. ε2 carrier status is associated with epigenome-wide methylation differences in the blood. The loci identified are located in trans as well as cis to APOE and implicate genes involved in lipid homeostasis.


Subject(s)
Alleles , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , DNA Methylation/genetics , Epigenome , Cholesterol/metabolism , Gene Ontology , Heterozygote , Humans , Quantitative Trait Loci/genetics
12.
Front Genet ; 12: 791712, 2021.
Article in English | MEDLINE | ID: mdl-35069690

ABSTRACT

We describe a genome-wide analytical approach, SNP and Haplotype Regional Heritability Mapping (SNHap-RHM), that provides regional estimates of the heritability across locally defined regions in the genome. This approach utilises relationship matrices that are based on sharing of SNP and haplotype alleles at local haplotype blocks delimited by recombination boundaries in the genome. We implemented the approach on simulated data and show that the haplotype-based regional GRMs capture variation that is complementary to that captured by SNP-based regional GRMs, and thus justifying the fitting of the two GRMs jointly in a single analysis (SNHap-RHM). SNHap-RHM captures regions in the genome contributing to the phenotypic variation that existing genome-wide analysis methods may fail to capture. We further demonstrate that there are real benefits to be gained from this approach by applying it to real data from about 20,000 individuals from the Generation Scotland: Scottish Family Health Study. We analysed height and major depressive disorder (MDD). We identified seven genomic regions that are genome-wide significant for height, and three regions significant at a suggestive threshold (p-value < 1 × 10-5) for MDD. These significant regions have genes mapped to within 400 kb of them. The genes mapped for height have been reported to be associated with height in humans. Similarly, those mapped for MDD have been reported to be associated with major depressive disorder and other psychiatry phenotypes. The results show that SNHap-RHM presents an exciting new opportunity to analyse complex traits by allowing the joint mapping of novel genomic regions tagged by either SNPs or haplotypes, potentially leading to the recovery of some of the "missing" heritability.

13.
Nature ; 591(7848): 92-98, 2021 03.
Article in English | MEDLINE | ID: mdl-33307546

ABSTRACT

Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice.


Subject(s)
COVID-19/genetics , COVID-19/physiopathology , Critical Illness , 2',5'-Oligoadenylate Synthetase/genetics , COVID-19/pathology , Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 21/genetics , Critical Care , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Drug Repositioning , Female , Genome-Wide Association Study , Humans , Inflammation/genetics , Inflammation/pathology , Inflammation/physiopathology , Lung/pathology , Lung/physiopathology , Lung/virology , Male , Multigene Family/genetics , Receptor, Interferon alpha-beta/genetics , Receptors, CCR2/genetics , TYK2 Kinase/genetics , United Kingdom
14.
Pain Rep ; 5(6): e868, 2020.
Article in English | MEDLINE | ID: mdl-33251471

ABSTRACT

Most patients with chronic pain do not find adequate pain relief with a single treatment, and accumulating evidence points to the added benefits of rational combinations of different treatments. Given that psychological therapies, such as mindfulness-based interventions (MBIs), are often delivered in conjunction with concomitant analgesic drug therapies (CADTs), this systematic scoping review examines the evidence for any interactions between MBIs and CADTs. The protocol for this review has been published and registered. MEDLINE, Cochrane Central Register of Controlled Trials, EMBASE, and PsycINFO databases were searched until July 2019. We included randomized controlled trials that evaluated the efficacy of MBIs for the treatment of chronic pain. A total of 40 randomized controlled trials (2978 participants) were included. Thirty-nine of 40 (97.5%) included mindfulness-based clinical trials allowed the use of CADTs. However, only 6 of these 39 (15.4%) trials provided adequate details of what these CADTs were, and only 4 (10.3%) trials controlled for CADTs. Of great relevance to this review, none of the included trials analyzed the interactions between MBIs and the CADTs to determine whether they have an additive, synergistic, or antagonistic effect on chronic pain. Adverse events were inconsistently reported, and no judgment could be made about safety. Future trials assessing the interactions between MBIs and CADTs, with better harms reporting, are needed to better define the role of MBIs in the management of chronic pain.

16.
Nat Metab ; 2(10): 1135-1148, 2020 10.
Article in English | MEDLINE | ID: mdl-33067605

ABSTRACT

Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.


Subject(s)
Cardiovascular System/metabolism , Chromosome Mapping , Drug Delivery Systems , Genomics , ATP Binding Cassette Transporter 1/genetics , Asthma/genetics , Gene Knockdown Techniques , Genome-Wide Association Study , Humans , Inflammatory Bowel Diseases/genetics , Interleukin-1 Receptor-Like 1 Protein/genetics , Intracellular Signaling Peptides and Proteins/genetics , Linkage Disequilibrium , Mendelian Randomization Analysis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proteome , Quantitative Trait Loci , Receptors, CCR2/genetics , Receptors, CCR5/genetics
17.
Clin Epigenetics ; 12(1): 95, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32600451

ABSTRACT

BACKGROUND: Smoking status, alcohol consumption and HPV infection (acquired through sexual activity) are the predominant risk factors for oropharyngeal cancer and are thought to alter the prognosis of the disease. Here, we conducted single-site and differentially methylated region (DMR) epigenome-wide association studies (EWAS) of these factors, in addition to ∼ 3-year survival, using Illumina Methylation EPIC DNA methylation profiles from whole blood in 409 individuals as part of the Head and Neck 5000 (HN5000) study. Overlapping sites between each factor and survival were then assessed using two-step Mendelian randomization to assess whether methylation at these positions causally affected survival. RESULTS: Using the MethylationEPIC array in an OPC dataset, we found novel CpG associations with smoking, alcohol consumption and ~ 3-year survival. We found no CpG associations below our multiple testing threshold associated with HPV16 E6 serological response (used as a proxy for HPV infection). CpG site associations below our multiple-testing threshold (PBonferroni < 0.05) for both a prognostic factor and survival were observed at four gene regions: SPEG (smoking), GFI1 (smoking), PPT2 (smoking) and KHDC3L (alcohol consumption). Evidence for a causal effect of DNA methylation on survival was only observed in the SPEG gene region (HR per SD increase in methylation score 1.28, 95% CI 1.14 to 1.43, P 2.12 × 10-05). CONCLUSIONS: Part of the effect of smoking on survival in those with oropharyngeal cancer may be mediated by methylation at the SPEG gene locus. Replication in data from independent datasets and data from HN5000 with longer follow-up times is needed to confirm these findings.


Subject(s)
Biomarkers/analysis , Epigenesis, Genetic/genetics , Epigenomics/methods , Oropharyngeal Neoplasms/genetics , Adult , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Case-Control Studies , Cohort Studies , CpG Islands/genetics , DNA Methylation , Epigenome/genetics , Female , Humans , Male , Mendelian Randomization Analysis/methods , Middle Aged , Muscle Proteins/genetics , Oncogene Proteins, Viral/blood , Oropharyngeal Neoplasms/etiology , Oropharyngeal Neoplasms/mortality , Oropharyngeal Neoplasms/virology , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Prognosis , Protein Serine-Threonine Kinases/genetics , Proteins/genetics , Repressor Proteins/blood , Risk Factors , Smoking/adverse effects , Smoking/genetics , Survival Rate
18.
PLoS Genet ; 16(7): e1008785, 2020 07.
Article in English | MEDLINE | ID: mdl-32628676

ABSTRACT

To efficiently transform genetic associations into drug targets requires evidence that a particular gene, and its encoded protein, contribute causally to a disease. To achieve this, we employ a three-step proteome-by-phenome Mendelian Randomization (MR) approach. In step one, 154 protein quantitative trait loci (pQTLs) were identified and independently replicated. From these pQTLs, 64 replicated locally-acting variants were used as instrumental variables for proteome-by-phenome MR across 846 traits (step two). When its assumptions are met, proteome-by-phenome MR, is equivalent to simultaneously running many randomized controlled trials. Step 2 yielded 38 proteins that significantly predicted variation in traits and diseases in 509 instances. Step 3 revealed that amongst the 271 instances from GeneAtlas (UK Biobank), 77 showed little evidence of pleiotropy (HEIDI), and 92 evidence of colocalization (eCAVIAR). Results were wide ranging: including, for example, new evidence for a causal role of tyrosine-protein phosphatase non-receptor type substrate 1 (SHPS1; SIRPA) in schizophrenia, and a new finding that intestinal fatty acid binding protein (FABP2) abundance contributes to the pathogenesis of cardiovascular disease. We also demonstrated confirmatory evidence for the causal role of four further proteins (FGF5, IL6R, LPL, LTA) in cardiovascular disease risk.


Subject(s)
Cardiovascular Diseases/genetics , Mendelian Randomization Analysis , Proteome/genetics , Schizophrenia/genetics , Antigens, Differentiation/genetics , Cardiovascular Diseases/pathology , Fatty Acid-Binding Proteins/genetics , Female , Fibroblast Growth Factor 5/genetics , Genetic Association Studies/methods , Humans , Lipoprotein Lipase/genetics , Lymphotoxin-alpha/genetics , Male , Quantitative Trait Loci , Receptors, Immunologic/genetics , Receptors, Interleukin-6/genetics , Schizophrenia/pathology
19.
Nat Commun ; 11(1): 2865, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32513961

ABSTRACT

Linking epigenetic marks to clinical outcomes improves insight into molecular processes, disease prediction, and therapeutic target identification. Here, a statistical approach is presented to infer the epigenetic architecture of complex disease, determine the variation captured by epigenetic effects, and estimate phenotype-epigenetic probe associations jointly. Implicitly adjusting for probe correlations, data structure (cell-count or relatedness), and single-nucleotide polymorphism (SNP) marker effects, improves association estimates and in 9,448 individuals, 75.7% (95% CI 71.70-79.3) of body mass index (BMI) variation and 45.6% (95% CI 37.3-51.9) of cigarette consumption variation was captured by whole blood methylation array data. Pathway-linked probes of blood cholesterol, lipid transport and sterol metabolism for BMI, and xenobiotic stimuli response for smoking, showed >1.5 times larger associations with >95% posterior inclusion probability. Prediction accuracy improved by 28.7% for BMI and 10.2% for smoking over a LASSO model, with age-, and tissue-specificity, implying associations are a phenotypic consequence rather than causal.


Subject(s)
Epigenesis, Genetic , Quantitative Trait, Heritable , Adult , Algorithms , Bayes Theorem , Biomarkers/analysis , Body Mass Index , Computer Simulation , DNA Methylation/genetics , Humans , Molecular Sequence Annotation , Organ Specificity/genetics , Reproducibility of Results
20.
Anim Genet ; 51(1): 58-69, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31696970

ABSTRACT

Intramuscular fat (IMF) is one of the main meat quality traits for breeding programmes in livestock species. The main objective of this study was to identify genomic regions associated with IMF content comparing two rabbit populations divergently selected for this trait, and to generate a list of putative candidate genes. Animals were genotyped using the Affymetrix Axiom OrcunSNP Array (200k). After quality control, the data involved 477 animals and 93 540 SNPs. Two methods were used in this research: single marker regressions with the data adjusted by genomic relatedness, and a Bayesian multiple marker regression. Associated genomic regions were located on the rabbit chromosomes (OCU) OCU1, OCU8 and OCU13. The highest value for the percentage of the genomic variance explained by a genomic region was found in two consecutive genomic windows on OCU8 (7.34%). Genes in the associated regions of OCU1 and OCU8 presented biological functions related to the control of adipose cell function, lipid binding, transportation and localisation (APOLD1, PLBD1, PDE6H, GPRC5D and GPRC5A) and lipid metabolic processes (MTMR2). The EWSR1 gene, underlying the OCU13 region, is linked to the development of brown adipocytes. The findings suggest that there is a large component of polygenic effect behind the differences in IMF content in these two lines, as the variance explained by most of the windows was low. The genomic regions of OCU1, OCU8 and OCU13 revealed novel candidate genes. Further studies would be needed to validate the associations and explore their possible application in selection programmes.


Subject(s)
Adipose Tissue, Brown , Breeding , Genotype , Rabbits/genetics , Animals , Bayes Theorem , Female , Genetic Association Studies/veterinary , Genetic Markers , Linkage Disequilibrium , Male , Meat/analysis , Phenotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...