Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 81(1): 252, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849591

ABSTRACT

Animals have evolved to seek, select, and exploit food sources in their environment. Collectively termed foraging, these ubiquitous behaviors are necessary for animal survival. As a foundation for understanding foraging, behavioral ecologists established early theoretical and mathematical frameworks which have been subsequently refined and supported by field and laboratory studies of foraging animals. These simple models sought to explain how animals decide which strategies to employ when locating food, what food items to consume, and when to explore the environment for new food sources. These foraging decisions involve integration of prior experience with multimodal sensory information about the animal's current environment and internal state. We suggest that the nematode Caenorhabditis elegans is well-suited for a high-resolution analysis of complex goal-oriented behaviors such as foraging. We focus our discussion on behavioral studies highlighting C. elegans foraging on bacteria and summarize what is known about the underlying neuronal and molecular pathways. Broadly, we suggest that this simple model system can provide a mechanistic understanding of decision-making and present additional avenues for advancing our understanding of complex behavioral processes.


Subject(s)
Caenorhabditis elegans , Decision Making , Feeding Behavior , Neurons , Animals , Caenorhabditis elegans/physiology , Decision Making/physiology , Feeding Behavior/physiology , Neurons/physiology , Models, Biological
2.
PLoS Genet ; 18(5): e1010178, 2022 05.
Article in English | MEDLINE | ID: mdl-35511794

ABSTRACT

Animals integrate changes in external and internal environments to generate behavior. While neural circuits detecting external cues have been mapped, less is known about how internal states like hunger are integrated into behavioral outputs. Here, we use the nematode C. elegans to examine how changes in internal nutritional status affect chemosensory behaviors. We show that acute food deprivation leads to a reversible decline in repellent, but not attractant, sensitivity. This behavioral change requires two conserved transcription factors MML-1 (MondoA) and HLH-30 (TFEB), both of which translocate from the intestinal nuclei to the cytoplasm during food deprivation. Next, we identify the insulin-like peptide INS-31 as a candidate ligand relaying food-status signals from the intestine to other tissues. Further, we show that neurons likely use the DAF-2 insulin receptor and AGE-1/PI-3 Kinase, but not DAF-16/FOXO to integrate these intestine-released peptides. Altogether, our study shows how internal food status signals are integrated by transcription factors and intestine-neuron signaling to generate flexible behaviors via the gut-brain axis.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Basic Helix-Loop-Helix Transcription Factors , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Forkhead Transcription Factors , Insulin , Intestines , Risk-Taking , Transcription Factors/genetics
3.
Elife ; 72018 12 28.
Article in English | MEDLINE | ID: mdl-30592258

ABSTRACT

The activity of neuronal circuits depends on the properties of the constituent neurons and their underlying synaptic and intrinsic currents. We describe the effects of extreme changes in extracellular pH - from pH 5.5 to 10.4 - on two central pattern generating networks, the stomatogastric and cardiac ganglia of the crab, Cancer borealis. Given that the physiological properties of ion channels are known to be sensitive to pH within the range tested, it is surprising that these rhythms generally remained robust from pH 6.1 to pH 8.8. The pH sensitivity of these rhythms was highly variable between animals and, unexpectedly, between ganglia. Animal-to-animal variability was likely a consequence of similar network performance arising from variable sets of underlying conductances. Together, these results illustrate the potential difficulty in generalizing the effects of environmental perturbation across circuits, even within the same animal.


Subject(s)
Brachyura/physiology , Central Pattern Generators/physiology , Extracellular Space/chemistry , Animals , Hydrogen-Ion Concentration , Male , Nerve Net/physiology , Neurons/physiology , Pylorus/innervation , Pylorus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL