Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Fish Shellfish Immunol ; 146: 109366, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218419

ABSTRACT

Ocean acidification (OA) is recognized as a major stressor for a broad range of marine organisms, particularly shell-building invertebrates. OA can cause alterations in various physiological processes such as growth and metabolism, although its effect on host-pathogen interactions remains largely unexplored. In this study, we used transcriptomics, proteomics, and physiological assays to evaluate changes in immunity of the eastern oyster Crassostrea virginica exposed to OA conditions (pH = 7.5 vs pH = 7.9) at various life stages. The susceptibility of oyster larvae to Vibrio infection increased significantly (131 % increase in mortality) under OA conditions, and was associated with significant changes in their transcriptomes. The significantly higher mortality of larvae exposed to pathogens and acidification stress could be the outcome of an increased metabolic demand to cope with acidification stress (as seen by upregulation of metabolic genes) at the cost of immune function (downregulation of immune genes). While larvae were particularly vulnerable, juveniles appeared more robust to the stressors and there were no differences in mortality after pathogen (Aliiroseovarius crassostrea and Vibrio spp.) exposure. Proteomic investigations in adult oysters revealed that acidification stress resulted in a significant downregulation of mucosal immune proteins including those involved in pathogen recognition and microbe neutralization, suggesting weakened mucosal immunity. Hemocyte function in adults was also impaired by high pCO2, with a marked reduction in phagocytosis (67 % decrease in phagocytosis) in OA conditions. Together, results suggest that OA impairs immune function in the eastern oyster making them more susceptible to pathogen-induced mortality outbreaks. Understanding the effect of multiple stressors such as OA and disease is important for accurate predictions of how oysters will respond to future climate regimes.


Subject(s)
Crassostrea , Seawater , Animals , Seawater/chemistry , Crassostrea/metabolism , Hydrogen-Ion Concentration , Proteomics , Immunosuppression Therapy , Gene Expression Profiling , Carbon Dioxide/pharmacology
2.
Res Sq ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37790380

ABSTRACT

Background: While acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell-type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that is highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages towards an anti-inflammatory phenotype, yet the signaling pathways regulated by macrophage FABP5 have not been systematically profiled. Herein, we leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow derived macrophages (BMDMs). Results: Stable isotope labeling by amino acids (SILAC) based analysis of M1 and M2 polarized wild-type (WT) and FABP5 knockout (KO) BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted several downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Kinase enrichment analysis based on phosphorylated sites revealed key kinases, including members of the GRK family, that were altered in FABP5 KO BMDMs. Reactive oxygen species (ROS) levels were elevated in M1 polarized KO macrophages, consistent with the differential protein expression profiles. Conclusions: This study represents a comprehensive characterization of the impact of FABP5 deletion upon the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered multiple pathways implicated in inflammatory responses and macrophage function. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling.

3.
Nucleic Acids Res ; 51(20): 11104-11122, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37852757

ABSTRACT

The timing of transcription and replication must be carefully regulated for heavily-transcribed genomes of double-stranded DNA viruses: transcription of immediate early/early genes must decline as replication ramps up from the same genome-ensuring efficient and timely replication of viral genomes followed by their packaging by structural proteins. To understand how the prototypic DNA virus Epstein-Barr virus tackles the logistical challenge of switching from transcription to DNA replication, we examined the proteome at viral replication forks. Specifically, to transition from transcription, the viral DNA polymerase-processivity factor EA-D is SUMOylated by the epigenetic regulator and E3 SUMO-ligase KAP1/TRIM28. KAP1's SUMO2-ligase function is triggered by phosphorylation via the PI3K-related kinase ATM and the RNA polymerase II-associated helicase RECQ5 at the transcription machinery. SUMO2-EA-D then recruits the histone loader CAF1 and the methyltransferase SETDB1 to silence the parental genome via H3K9 methylation, prioritizing replication. Thus, a key viral protein and host DNA repair, epigenetic and transcription-replication interference pathways orchestrate the handover from transcription-to-replication, a fundamental feature of DNA viruses.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Helicases/genetics , DNA Replication/genetics , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Histones/genetics , Histones/metabolism , Ubiquitin-Protein Ligases/metabolism , Virus Replication
4.
FASEB J ; 37(11): e23247, 2023 11.
Article in English | MEDLINE | ID: mdl-37800872

ABSTRACT

Sphingosine kinase 1 (SK1) is a key sphingolipid enzyme that is upregulated in several types of cancer, including lymphoma which is a heterogenous group of malignancies. Treatment for lymphoma has improved significantly by the introduction of new therapies; however, subtypes with tumor protein P53 (p53) mutations or deletion have poor prognosis, making it critical to explore new therapeutic strategies in this context. SK1 has been proposed as a therapeutic target in different types of cancer; however, the effect of targeting SK1 in cancers with p53 deletion has not been evaluated yet. Previous work from our group suggests that loss of SK1 is a key event in mediating the tumor suppressive effect of p53. Employing both genetic and pharmacological approaches to inhibit SK1 function in Trp53KO mice, we show that targeting SK1 decreases tumor growth of established p53KO thymic lymphoma. Inducible deletion of Sphk1 or its pharmacological inhibition drive increased cell death in tumors which is accompanied by selective accumulation of sphingosine levels. These results demonstrate the relevance of SK1 in the growth and maintenance of lymphoma in the absence of p53 function, positioning this enzyme as a potential therapeutic target for the treatment of tumors that lack functional p53.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Animals , Mice , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Sphingosine/metabolism , Neoplasms/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism
5.
Curr Opin Genet Dev ; 83: 102112, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37703635

ABSTRACT

Nonshivering thermogenesis by brown adipose tissue (BAT) is an adaptive mechanism for maintaining body temperature in cold environments. BAT is critical in rodents and human infants and has substantial influence on adult human metabolism. Stimulating BAT therapeutically is also being investigated as a strategy against metabolic diseases because of its ability to function as a catabolic sink. Thus, understanding how brown adipocytes and the related brite/beige adipocytes use nutrients to fuel their demanding metabolism has both basic and translational implications. Recent advances in mass spectrometry and isotope tracing are improving the ability to study metabolic flux in vivo. Here, we review how such strategies are advancing our understanding of adipocyte thermogenesis and conclude with key future questions.


Subject(s)
Adipose Tissue, Brown , Obesity , Adult , Humans , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Adipocytes, Brown/metabolism , Thermogenesis/genetics
6.
Pediatr Dev Pathol ; 26(5): 466-471, 2023.
Article in English | MEDLINE | ID: mdl-37672728

ABSTRACT

INTRODUCTION: In both Canada and the United States, workload measurement for anatomic pathology is mainly based on complexity and clinical significance of specimens, with gross examination being a considerable contributor. While Pathologists' Assistants (PAs) play an increasing role in gross examination, there is little known regarding the time required for PAs to complete grossing tasks. This information is essential for effective staffing and workload management in pathology laboratories. The objective of our study was to determine the time required for PAs to gross second and third trimester singleton placentas in a large tertiary hospital with a significant perinatal pathology service. MATERIALS AND METHODS: For our study, 7 certified PAs each grossed a minimum of 10 second and third trimester singleton placentas using a standard placental grossing protocol, an electronic laboratory information system, and voice recognition dictation software. Placental specimens requiring photography, sampling for ancillary studies, or immediate pathologist's consultation were excluded. We calculated average and standard deviation of grossing times for each PA, overall average grossing time, and 95% confidence interval using a mixed linear regression model. We analyzed the impact of PA job experience, degree obtained, and number of blocks prepared on overall average in a multivariate analysis. RESULTS: The mean grossing times for each PA ranged from 11.0 (standard deviation [sd] = 2.0) to 17.8 (sd = 4.5) minutes. The overall average grossing time was 14.5 minutes, with a 95% confidence interval of 11.7 to 17.3 minutes. In multivariate analysis, an increase in the number of blocks prepared was significantly associated with longer overall average grossing time. If 4 blocks were prepared consistently, the model predicted a slightly lower overall average of 13.3 minutes, with a 95% confidence interval of 10.9 to 15.7 minutes. DISCUSSION: To our knowledge, our study is the first to objectively report time required for PAs to perform gross examinations of routine second and third trimester singleton placentas. The methodology of our study is replicable and can be applied to other specimen types and laboratory settings. Previously, estimated grossing times for specimens were primarily based on retrospective surveys, which were susceptible to recall errors and subjectivity. However, our study demonstrates objective data collection is achievable. Furthermore, the data collected from this study offer valuable insights into the accuracy of previous and current pathology workload models for second and third trimester singleton placentas.


Subject(s)
Pathologists , Placenta , Pregnancy , Humans , Female , Retrospective Studies , Pregnancy Trimester, Third , Specimen Handling/methods
7.
Bioorg Chem ; 139: 106747, 2023 10.
Article in English | MEDLINE | ID: mdl-37531819

ABSTRACT

Ceramides impact a diverse array of biological functions and have been implicated in disease pathogenesis. The enzyme neutral ceramidase (nCDase) is a zinc-containing hydrolase and mediates the metabolism of ceramide to sphingosine (Sph), both in cells and in the intestinal lumen. nCDase inhibitors based on substrate mimetics, for example C6-urea ceramide, have limited potency, aqueous solubility, and micelle-free fraction. To identify non-ceramide mimetic nCDase inhibitors, hit compounds from an HTS campaign were evaluated in biochemical, cell based and in silico modeling approaches. A majority of small molecule nCDase inhibitors contained pharmacophores capable of zinc interaction but retained specificity for nCDase over zinc-containing acid and alkaline ceramidases, as well as matrix metalloprotease-3 and histone deacetylase-1. nCDase inhibitors were refined by SAR, were shown to be substrate competitive and were active in cellular assays. nCDase inhibitor compounds were modeled by in silico DOCK screening and by molecular simulation. Modeling data supports zinc interaction and a similar compound binding pose with ceramide. nCDase inhibitors were identified with notably improved activity and solubility in comparison with the reference lipid-mimetic C6-urea ceramide.


Subject(s)
Ceramides , Neutral Ceramidase , Catalytic Domain , Ceramides/chemistry , Neutral Ceramidase/antagonists & inhibitors , Sphingosine/chemistry
8.
Nat Metab ; 5(7): 1204-1220, 2023 07.
Article in English | MEDLINE | ID: mdl-37337122

ABSTRACT

Adaptive thermogenesis by brown adipose tissue (BAT) dissipates calories as heat, making it an attractive anti-obesity target. Yet how BAT contributes to circulating metabolite exchange remains unclear. Here, we quantified metabolite exchange in BAT and skeletal muscle by arteriovenous metabolomics during cold exposure in fed male mice. This identified unexpected metabolites consumed, released and shared between organs. Quantitative analysis of tissue fluxes showed that glucose and lactate provide ~85% of carbon for adaptive thermogenesis and that cold and CL316,243 trigger markedly divergent fuel utilization profiles. In cold adaptation, BAT also dramatically increases nitrogen uptake by net consuming amino acids, except glutamine. Isotope tracing and functional studies suggest glutamine catabolism concurrent with synthesis via glutamine synthetase, which avoids ammonia buildup and boosts fuel oxidation. These data underscore the ability of BAT to function as a glucose and amino acid sink and provide a quantitative and comprehensive landscape of BAT fuel utilization to guide translational studies.


Subject(s)
Adipose Tissue, Brown , Glutamine , Male , Animals , Mice , Adipose Tissue, Brown/metabolism , Glutamine/metabolism , Glucose/metabolism , Thermogenesis/physiology , Muscle, Skeletal/metabolism
9.
Proteomes ; 11(2)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37368466

ABSTRACT

Receptor tyrosine kinases (RTKs) can show extensive crosstalk, directly and indirectly. Elucidating RTK crosstalk remains an important goal in the clinical combination of anti-cancer therapies. Here, we present mass spectrometry and pharmacological approaches showing the hepatocyte growth factor receptor (MET)-promoting tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) and other membrane receptors in MET-amplified H1993 NSCLC cells. Conversely, in H292 wt-EGFR NSCLC cells, EGFR promotes the tyrosine phosphorylation of MET. Reciprocal regulation of the EGFR and insulin receptor (IR) was observed in the GEO CRC cells, where inhibition of the EGFR drives tyrosine phosphorylation of the insulin receptor. Similarly, in platelet-derived growth factor receptor (PDGFR)-amplified H1703 NSCLC cells, inhibition of the EGFR promotes the tyrosine phosphorylation of the PDGFR. These RTK interactions are used to illustrate basic principles applicable to other RTK signaling networks. More specifically, we focus on two types of RTK interaction: (1) co-option of one RTK by another and (2) reciprocal activation of one receptor following the inhibition of a distinct receptor.

10.
J Med Chem ; 66(11): 7454-7474, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37195170

ABSTRACT

Bruton's tyrosine kinase (BTK) is a target for treating B-cell malignancies and autoimmune diseases, and several BTK inhibitors are already approved for use in humans. Heterobivalent BTK protein degraders are also in development, based on the premise that proteolysis targeting chimeras (PROTACs) may provide additional therapeutic benefits. However, most BTK PROTACs are based on the BTK inhibitor ibrutinib raising concerns about their selectivity profiles, given the known off-target effects of ibrutinib. Here, we disclose the discovery and in vitro characterization of BTK PROTACs based on the selective BTK inhibitor GDC-0853 and the cereblon recruitment ligand pomalidomide. PTD10 is a highly potent BTK degrader (DC50 0.5 nM) that inhibited cell growth and induced apoptosis at lower concentrations than the two parent molecules, as well as three previously reported BTK PROTACs, and had improved selectivity compared to ibrutinib-based BTK PROTACs.


Subject(s)
B-Lymphocytes , Protein-Tyrosine Kinases , Proteolysis Targeting Chimera , Humans , Agammaglobulinaemia Tyrosine Kinase , B-Lymphocytes/metabolism , Cell Proliferation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/pharmacology
11.
Mol Ther Oncolytics ; 28: 277-292, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36911069

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths in the United States with non-small cell lung cancer (NSCLC) accounting for most cases. Despite advances in cancer therapeutics, the 5-year survival rate has remained poor due to several contributing factors, including its resistance to therapeutics. Therefore, there is a pressing need to develop therapeutics that can overcome resistance. Non-coding RNAs, including microRNAs (miRNAs), have been found to contribute to cancer resistance and therapeutics by modulating the expression of several targets involving multiple key mechanisms. In this study, we investigated the therapeutic potential of miR-129 modified with 5-fluorouracil (5-FU) in NSCLC. Our results show that 5-FU modified miR-129 (5-FU-miR-129) inhibits proliferation, induces apoptosis, and retains function as an miRNA in NSCLC cell lines A549 and Calu-1. Notably, we observed that 5-FU-miR-129 was able to overcome resistance to tyrosine kinase inhibitors and chemotherapy in cell lines resistant to erlotinib or 5-FU. Furthermore, we observed that the inhibitory effect of 5-FU-miR-129 can also be achieved in NSCLC cells under vehicle-free conditions. Finally, 5-FU-miR-129 inhibited NSCLC tumor growth and extended survival in vivo without toxic side effects. Altogether, our results demonstrate the potential of 5-FU-miR-129 as a highly potent cancer therapeutic in NSCLC.

12.
Environ Sci Technol ; 57(12): 4796-4805, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36920253

ABSTRACT

Phosphate dosing is the principle strategy used in the United Kingdom to reduce the concentration of lead in tap waters supplied by lead water pipes. The mechanisms of phosphate-mediated lead control are not fully understood, but solid solutions of lead calcium apatite are thought to play an important role. This study investigated the microstructure of a lead pipe, supplied with high-alkalinity tap water, in which the lead calcium apatite crystals were spherulitic having rounded and dumb-bell-shaped morphologies. XRD, Fourier transform infrared spectroscopy, optical microscopy, Raman spectroscopy, scanning electron microscopy, and energy-dispersive spectroscopy showed that the lead pipe had a well-established inner layer of litharge; a middle layer containing lead calcium apatite spherulites, plumbonacrite, and some hydrocerussite; and an outer layer containing iron, lead, phosphorus, calcium, silicon, and aluminum. It was found that spherulitic lead calcium apatite could be grown in the laboratory by adding hydrocerussite to synthetic soft and hard water-containing phosphate, chloride, and citrate ions at pH 5.5 but not when the citrate was absent. This suggests that dissolved organic molecules might play a role in spherulite formation on lead water pipes. These molecules might inhibit the formation of lead calcium apatite, reducing the effectiveness of phosphate dosing in lead water pipes.


Subject(s)
Apatites , Water Pipe Smoking , Apatites/chemistry , Calcium , Phosphates/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Citrates , Spectroscopy, Fourier Transform Infrared , Calcium Phosphates/chemistry
13.
J Relig Health ; 62(3): 1636-1657, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36169902

ABSTRACT

Drawing on data provided by 803 Methodist circuit ministers serving in Great Britain, the present study was designed to test the association between conservative Christian belief and work-related psychological wellbeing as operationalised by the balanced affect model proposed by the Francis Burnout Inventory. After taking into account the effects of personal factors, psychological factors, contextual factors, and experience factors, holding conservative Christian belief was associated with a higher level of positive affect (satisfaction in ministry) but independent of negative affect (emotional exhaustion in ministry).


Subject(s)
Burnout, Professional , Protestantism , Humans , United Kingdom , Clergy/psychology , Emotions , Burnout, Professional/psychology , Personal Satisfaction , Job Satisfaction
14.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555707

ABSTRACT

Seawater pH and carbonate saturation are predicted to decrease dramatically by the end of the century. This process, designated ocean acidification (OA), threatens economically and ecologically important marine calcifiers, including the northern quahog (Mercenaria mercenaria). While many studies have demonstrated the adverse impacts of OA on bivalves, much less is known about mechanisms of resilience and adaptive strategies. Here, we examined clam responses to OA by evaluating cellular (hemocyte activities) and molecular (high-throughput proteomics, RNASeq) changes in hemolymph and extrapallial fluid (EPF-the site of biomineralization located between the mantle and the shell) in M. mercenaria continuously exposed to acidified (pH ~7.3; pCO2 ~2700 ppm) and normal conditions (pH ~8.1; pCO2 ~600 ppm) for one year. The extracellular pH of EPF and hemolymph (~7.5) was significantly higher than that of the external acidified seawater (~7.3). Under OA conditions, granulocytes (a sub-population of hemocytes important for biomineralization) were able to increase intracellular pH (by 54% in EPF and 79% in hemolymph) and calcium content (by 56% in hemolymph). The increased pH of EPF and hemolymph from clams exposed to high pCO2 was associated with the overexpression of genes (at both the mRNA and protein levels) related to biomineralization, acid-base balance, and calcium homeostasis, suggesting that clams can use corrective mechanisms to mitigate the negative impact of OA.


Subject(s)
Mercenaria , Transcriptome , Animals , Seawater/chemistry , Calcium/metabolism , Hydrogen-Ion Concentration , Biomineralization , Proteomics , Carbon Dioxide/metabolism , Mercenaria/metabolism
15.
J Biol Chem ; 298(10): 102379, 2022 10.
Article in English | MEDLINE | ID: mdl-35973513

ABSTRACT

Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) regulates metabolism, cell proliferation, and cell survival. mTORC2 activity is stimulated by growth factors, and it phosphorylates the hydrophobic motif site of the AGC kinases AKT, SGK, and PKC. However, the proteins that interact with mTORC2 to control its activity and localization remain poorly defined. To identify mTORC2-interacting proteins in living cells, we tagged endogenous RICTOR, an essential mTORC2 subunit, with the modified BirA biotin ligase BioID2 and performed live-cell proximity labeling. We identified 215 RICTOR-proximal proteins, including proteins with known mTORC2 pathway interactions, and 135 proteins (63%) not previously linked to mTORC2 signaling, including nuclear and cytoplasmic proteins. Our imaging and cell fractionation experiments suggest nearly 30% of RICTOR is in the nucleus, hinting at potential nuclear functions. We also identified 29 interactors containing RICTOR-dependent, insulin-stimulated phosphorylation sites, thus providing insight into mTORC2-dependent insulin signaling dynamics. Finally, we identify the endogenous ADP ribosylation factor 1 (ARF1) GTPase as an mTORC2-interacting protein. Through gain-of-function and loss-of-function studies, we provide functional evidence that ARF1 may negatively regulate mTORC2. In summary, we present a new method of studying endogenous mTORC2, a resource of RICTOR/mTORC2 protein interactions in living cells, and a potential mechanism of mTORC2 regulation by the ARF1 GTPase.


Subject(s)
ADP-Ribosylation Factor 1 , Protein Interaction Maps , Rapamycin-Insensitive Companion of mTOR Protein , TOR Serine-Threonine Kinases , Humans , ADP-Ribosylation Factor 1/metabolism , Insulin/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , TOR Serine-Threonine Kinases/metabolism , Protein Interaction Mapping/methods
16.
Cell Rep ; 39(7): 110834, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35584675

ABSTRACT

The evolution of zinc (Zn) as a protein cofactor altered the functional landscape of biology, but dependency on Zn also created an Achilles' heel, necessitating adaptive mechanisms to ensure Zn availability to proteins. A debated strategy is whether metallochaperones exist to prioritize essential Zn-dependent proteins. Here, we present evidence for a conserved family of putative metal transferases in human and fungi, which interact with Zn-dependent methionine aminopeptidase type I (MetAP1/Map1p/Fma1). Deletion of the putative metal transferase in Saccharomyces cerevisiae (ZNG1; formerly YNR029c) leads to defective Map1p function and a Zn-deficiency growth defect. In vitro, Zng1p can transfer Zn2+ or Co2+ to apo-Map1p, but unlike characterized copper chaperones, transfer is dependent on GTP hydrolysis. Proteomics reveal mis-regulation of the Zap1p transcription factor regulon because of loss of ZNG1 and Map1p activity, suggesting that Zng1p is required to avoid a compounding effect of Map1p dysfunction on survival during Zn limitation.


Subject(s)
Saccharomyces cerevisiae Proteins , Transferases , Zinc , Humans , Aminopeptidases/genetics , Aminopeptidases/metabolism , Guanosine Triphosphate , Metals/metabolism , Methionine , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/physiology , Transferases/physiology , Zinc/metabolism
17.
Front Immunol ; 13: 838530, 2022.
Article in English | MEDLINE | ID: mdl-35273613

ABSTRACT

Circulating hemocytes in the hemolymph represent the backbone of innate immunity in bivalves. Hemocytes are also found in the extrapallial fluid (EPF), the space delimited between the shell and the mantle, which is the site of shell biomineralization. This study investigated the transcriptome, proteome, and function of EPF and hemolymph in the hard clam Mercenaria mercenaria. Total and differential hemocyte counts were similar between EPF and hemolymph. Overexpressed genes in the EPF were found to have domains previously identified as being part of the "biomineralization toolkit" and involved in bivalve shell formation. Biomineralization related genes included chitin-metabolism genes, carbonic anhydrase, perlucin, and insoluble shell matrix protein genes. Overexpressed genes in the EPF encoded proteins present at higher abundances in the EPF proteome, specifically those related to shell formation such as carbonic anhydrase and insoluble shell matrix proteins. Genes coding for bicarbonate and ion transporters were also overexpressed, suggesting that EPF hemocytes are involved in regulating the availability of ions critical for biomineralization. Functional assays also showed that Ca2+ content of hemocytes in the EPF were significantly higher than those in hemolymph, supporting the idea that hemocytes serve as a source of Ca2+ during biomineralization. Overexpressed genes and proteins also contained domains such as C1q that have dual functions in biomineralization and immune response. The percent of phagocytic granulocytes was not significantly different between EPF and hemolymph. Together, these findings suggest that hemocytes in EPF play a central role in both biomineralization and immunity.


Subject(s)
Carbonic Anhydrases , Mercenaria , Animals , Biomineralization , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Hemocytes , Mercenaria/genetics , Mercenaria/metabolism , Proteome/metabolism , Proteomics , Transcriptome
18.
Methods Mol Biol ; 2448: 119-130, 2022.
Article in English | MEDLINE | ID: mdl-35167094

ABSTRACT

Brown adipose tissue (BAT) demonstrates extraordinary metabolic capacity. Previous research using conventional radio tracers reveals that BAT can act as a sink for a diverse menu of nutrients; still, the question of how BAT utilizes these nutrients remains unclear. Recent advances in mass spectrometry (MS) coupled to stable isotope tracing methods have greatly improved our understanding of metabolism in biology. Here, we have developed a BAT-tailored metabolomics and stable isotope tracing protocol using, as an example, the universally labeled 13C-glucose, a key nutrient heavily utilized by BAT. This method enables metabolic roadmaps to be drawn and pathway fluxes to be inferred for each nutrient tracer within BAT and its application could uncover new metabolic pathways not previously appreciated for BAT physiology.


Subject(s)
Adipose Tissue, Brown , Metabolomics , Adipose Tissue, Brown/metabolism , Carbon Isotopes/metabolism , Mass Spectrometry , Metabolic Networks and Pathways
19.
Anal Biochem ; 643: 114577, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35134389

ABSTRACT

Neutral ceramidase is a hydrolase of ceramide that has been implicated in multiple biologic processes, including inflammation and oncogenesis. Ceramides and other sphingolipids, belong to a family of N-acyl linked lipids that are biologically active in signaling, despite their limited structural functions. Ceramides are generally pro-apoptotic, while sphingosine and sphingosine-1-phosphate (S1P) exert proliferative and pro-oncogenic effects. Ceramidases are important regulators of ceramide levels that hydrolyze ceramide to sphingosine. Thus, ceramidase inhibition significantly increases the quantities of ceramide and its associated signaling. To better understand the function of ceramide, biochemical and cellular assays for enzymatic activity were developed and validated to identify inhibitors of human neutral ceramidase (nCDase). Here we review the measurement of nCDase activity both in vitro and in vivo.


Subject(s)
Neutral Ceramidase/analysis , Humans , Neutral Ceramidase/genetics , Neutral Ceramidase/metabolism , Pseudomonas aeruginosa/enzymology
20.
Sci Adv ; 7(36): eabg6600, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516901

ABSTRACT

Podocyte loss triggering aberrant activation and proliferation of parietal epithelial cells (PECs) is a central pathogenic event in proliferative glomerulopathies. Podocyte-specific Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, is essential for maintaining podocyte homeostasis and PEC quiescence. Using mice with podocyte-specific knockdown of Klf4, we conducted glomerular RNA-sequencing, tandem mass spectrometry, and single-nucleus RNA-sequencing to identify cell-specific transcriptional changes that trigger PEC activation due to podocyte loss. Integration with in silico chromatin immunoprecipitation identified key ligand-receptor interactions, such as fibronectin 1 (FN1)­αVß6, between podocytes and PECs dependent on KLF4 and downstream signal transducer and activator of transcription 3 (STAT3) signaling. Knockdown of Itgb6 in PECs attenuated PEC activation. Additionally, podocyte-specific induction of human KLF4 or pharmacological inhibition of downstream STAT3 activation reduced FN1 and integrin ß 6 (ITGB6) expression and mitigated podocyte loss and PEC activation in mice. Targeting podocyte-PEC crosstalk might be a critical therapeutic strategy in proliferative glomerulopathies.

SELECTION OF CITATIONS
SEARCH DETAIL
...