Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Pathogens ; 11(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35890023

ABSTRACT

Despite significant advances in ensuring the safety of the blood supply, there is continued risk of transfusion transmitted infections (TTIs) from newly emerging or re-emerging infections. Globally, several pathogen reduction technologies (PRTs) for blood safety have been in development as an alternative to traditional treatment methods. Despite broad spectrum antimicrobial efficacy, some of the approved ultraviolet (UV) light-based PRTs, understandably due to UV light-associated toxicities, fall short in preserving the full functional spectrum of the treated blood components. As a safer alternative to the UV-based microbicidal technologies, investigations into the use of violet-blue light in the region of 405 nm have been on the rise as these wavelengths do not impair the treated product at doses that demonstrate microbicidal activity. Recently, we have demonstrated that a 405 nm violet-blue light dose of 270 J/cm2 was sufficient for reducing bacteria and the parasite in plasma and platelets suspended in plasma while preserving the quality of the treated blood product stored for transfusion. Drawn from the previous experience, here we evaluated the virucidal potential of 405 nm violet-blue light dose of 270 J/cm2 on an important blood-borne enveloped virus, the human immunodeficiency virus 1 (HIV-1), in human plasma. Both test plasma (HIV-1 spiked and treated with various doses of 405 nm light) and control plasma (HIV-1 spiked, but not treated with the light) samples were cultured with HIV-1 permissive H9 cell line for up to 21 days to estimate the viral titers. Quantitative HIV-1 p24 antigen (HIV-1 p24) levels reflective of HIV-1 titers were measured for each light dose to assess virus infectivity. Our results demonstrate that a 405 nm light dose of 270 J/cm2 is also capable of 4-5 log HIV-1 reduction in plasma under the conditions tested. Overall, this study provides the first proof-of-concept that 405 nm violet-blue light successfully inactivates HIV-1 present in human plasma, thereby demonstrating its potential towards being an effective PRT for this blood component safety.

2.
Int J Mol Sci ; 21(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971935

ABSTRACT

During the progression of HIV-1 infection, macrophage tropic HIV-1 that use the CCR5 co-receptor undergoes a change in co-receptor use to CXCR4 that is predominately T cell tropic. This change in co-receptor preference makes the virus able to infect T cells. HIV-2 is known to infect MDMs and T cells and is dual tropic. The aim of this study was to elucidate the differential expression profiles of host miRNAs and their role in cells infected with HIV-1/HIV-2. To achieve this goal, a comparative global miRNA expression profile was determined in human PBMCs and MDMs infected with HIV-1/HIV-2. Differentially expressed miRNAs were identified in HIV-1/HIV-2 infected PBMCs and MDMs using the next-generation sequencing (NGS) technique. A comparative global miRNA expression profile in infected MDMs and PBMCs with HIV-1 and HIV-2 identified differential expression of several host miRNAs. These differentially expressed miRNAs are likely to be involved in many signaling pathways, like the p53 signaling pathway, PI3K-Akt signaling pathways, MAPK signaling pathways, FoxO signaling pathway, and viral carcinogenesis. Thus, a comparative study of the differential expression of host miRNAs in MDMs and T cell in response to HIV-1 and HIV-2 infection will help us to identify unique biomarkers that can differentiate HIV-1 and HIV-2 infection.


Subject(s)
HIV Infections/metabolism , HIV-1/metabolism , HIV-2/metabolism , MAP Kinase Signaling System , Macrophages/metabolism , MicroRNAs/biosynthesis , Monocytes/metabolism , Transcriptome , HIV Infections/pathology , Humans , Macrophages/pathology , Macrophages/virology , Monocytes/pathology , Monocytes/virology
3.
Nanoscale Adv ; 2(1): 304-314, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-36133981

ABSTRACT

Nanoparticle based sensors are good alternatives for non-enzymatic sensing applications due to their high stability, superior photoluminescence, biocompatibility and ease of fabrication, with the only disadvantage being the cost of the synthesis process (owing to the expensive precursors and infrastructure). For the first time, we report the design of an immunosensor employing streptavidin conjugated copper nanocluster, developed at a much lower cost compared to other nanomaterials like noble metal nanoparticles and quantum dots. Using in silico tools, we have tried to establish the dynamics of conjugation of nanocluster to the streptavidin protein, based on EDC-NHS coupling. The computational simulations have successfully explained the crucial role played by the components of the immunosensor leading to an efficient design capable of high sensitivity. In order to demonstrate the functioning of the Copper Nanocluster ImmunoSensor (CuNIS), HIV-1 p24 biomarker test was chosen as the model assay. The immunosensor was able to achieve an analytical limit of detection of 23.8 pg mL-1 for HIV-1 p24 with a linear dynamic range of 27-1000 pg mL-1. When tested with clinical plasma samples, CuNIS based p24 assay showed 100% specificity towards HIV-1 p24. With the capability of multiplexed detection and a cost of fabrication 100 times lower than that of the conventional metal nanoclusters, CuNIS has the potential to be an essential low-cost diagnostic tool in resource-limited settings.

4.
EBioMedicine ; 43: 307-316, 2019 May.
Article in English | MEDLINE | ID: mdl-31005516

ABSTRACT

BACKGROUND: Accurate laboratory diagnosis of HIV is essential to reduce the risk of HIV-positive individuals transmitting HIV-1 infection. The goal of this study was to identify and assess a panel of host derived plasma miRNAs that could to serve as a prognostic and predictive biomarker to detect early/acute HIV-1 infection. METHODS: A total of 372 microRNAs were analyzed in nine plasma samples from HIV-1 infected individuals in the early phase of infection and three healthy controls using the miRNA PCR-array. Seventeen microRNAs were selected and validated in 80 plasma samples from HIV-1 infected individuals in the early phase of infection (20 each of eclipse stage, RNA+ stage, Ag + stage, and Ag + Ab+ stage of HIV-1 patients) and 25 healthy controls. Using the validation study results a plasma miRNA panel was developed and evaluated to detect early/acute HIV-1 infection in 49 blinded samples. FINDING: We identified an miRNA panel (PeHIV-1) containing four differentially expressed miRNAs (miR-16-5p, miR-20b-5p, miR-195-5p, and miR-223-3p) that could distinguish early HIV-1 infection from healthy controls with high AUC (1·000[1·00-1·00]), sensitivity (100%), and specificity (100%).We also found that miR-223-3p demonstrates 100% sensitivity and specificity (AUC 1·00[1·00-1·00]) and could distinguish eclipse stage of HIV-1 infection from healthy controls. To detect eclipse stage of HIV-1 infection we also developed a four-miRNA based (miR-16-5p, miR-206, let-7 g-3p, and miR-181c-3p) panel (PE) with AUC 0·999 (0·995-1·000), 100% sensitivity and 95·8% specificity. INTERPRETATION: The miRNA panel, PeHIV-1 is a potential biomarker for detecting early/acute stage of HIV-1infection and could help initiate early antiretroviral treatment, thus preventing the spread of HIV-1 infection.


Subject(s)
Circulating MicroRNA , HIV Infections/diagnosis , HIV Infections/genetics , HIV-1 , Host-Pathogen Interactions/genetics , MicroRNAs/genetics , Biomarkers , Case-Control Studies , Early Diagnosis , Gene Expression Profiling , HIV Infections/virology , Humans , MicroRNAs/blood , Prognosis , ROC Curve , Real-Time Polymerase Chain Reaction
5.
Nanoscale Adv ; 1(1): 273-280, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-36132469

ABSTRACT

We describe a novel application of Metal Enhanced Fluorescence (MEF) to immunoassays for boosting the signal through a single step modification of the europium nanoparticle based immunoassay with addition of gold nanoparticles. The new limit of detection was found to be 0.19 pg mL-1 which was much lower than that of the conventional assay which was around 1.80 pg mL-1, thus achieving a ten-fold increase in the limit of detection of p24, an early biomarker for HIV infections. Real world applications of the new technique were demonstrated with the commercially available Perkin Elmer Alliance kits greatly improving their sensitivity limits, thus demonstrating that the sensitivity and reproducibility of this approach are as good as those of high-end, sensitive immunoassays. The results of this study pave the way for the development of a highly sensitive screening protocol based on any fluorescent nanoparticle based immunoassay.

6.
Sci Adv ; 4(11): eaar6280, 2018 11.
Article in English | MEDLINE | ID: mdl-30474052

ABSTRACT

We have engineered streptavidin-labeled fluorescent gold nanoclusters to develop a gold nanocluster immunoassay (GNCIA) for the early and sensitive detection of HIV infection. We performed computational simulations on the mechanism of interaction between the nanoclusters and the streptavidin protein via in silico studies and showed that gold nanoclusters enhance the binding to the protein, by enhancing interaction between the Au atoms and the specific active site residues, compared to other metal nanoclusters. We also evaluated the role of glutathione conjugation in binding to gold nanoclusters with streptavidin. As proof of concept, GNCIA achieved a sensitivity limit of detection of HIV-1 p24 antigen in clinical specimens of 5 pg/ml, with a detection range up to1000 pg/ml in a linear dose-dependent manner. GNCIA demonstrated a threefold higher sensitivity and specificity compared to enzyme-linked immunosorbent assay for the detection of HIV p24 antigen. The specificity of the immunoassay was 100% when tested with plasma samples negative for HIV-1 p24 antigen and positive for viruses such as hepatitis B virus, hepatitis C virus, and dengue. GNCIA could be developed into a universal labeling technology using the relevant capture and detector antibodies for the specific detection of antigens of various pathogens in the future.


Subject(s)
Biosensing Techniques/methods , Fluorescence , Gold/chemistry , HIV Core Protein p24/blood , HIV Infections/diagnosis , Metal Nanoparticles/chemistry , Streptavidin/chemistry , Case-Control Studies , Early Diagnosis , HIV/immunology , HIV Core Protein p24/immunology , HIV Infections/blood , HIV Infections/immunology , Humans
7.
Sci Rep ; 8(1): 2546, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29416066

ABSTRACT

Non-coding RNAs and mRNAs have been implicated in replication, pathogenesis and host response in HIV infection. However, the impact of long intergenic non-coding RNAs (lincRNAs) on HIV-1 and HIV-2 infection is not known. In this study, we have analyzed expression profiles of lincRNAs and mRNAs in monocyte derived macrophages (MDMs) infected with HIV-1/HIV-2 using microarrays. Our study identified many differentially expressed lincRNAs and mRNAs in MDMs infected with HIV-1/HIV-2 compared to uninfected MDMs. Genes involved in glutathione metabolism and lysine degradation were differentially regulated only in HIV-1 infected MDMs. In HIV-2 infected MDMs, CUL 2, SFRS9, and RBBP4 genes were differentially expressed. Furthermore, we found that plasma levels of lincRNA: chr2: 165509129-165519404 and lincRNA: chr12: 57761837-57762303 were better indicators of HIV-1 infection while lincRNA: chr10:128586385-128592960, XLOC_001148 and lincRNA: chr5:87580664-87583451, were better indicators of HIV-2 infection. In summary, our study has demonstrated that there is substantial alteration in lincRNA and mRNA expression in response to HIV-1/HIV-2 infection. These differentially expressed lincRNAs and mRNAs could serve as prognostic and diagnostic biomarkers of HIV infection and help in the identification of new targets for therapy.


Subject(s)
Gene Expression Profiling , HIV Infections , HIV-1/immunology , HIV-2/immunology , Macrophages/virology , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Cullin Proteins/genetics , Cullin Proteins/metabolism , Glutathione/genetics , Glutathione/metabolism , HIV Infections/blood , HIV Infections/immunology , Humans , Lysine/genetics , Lysine/metabolism , Retinoblastoma-Binding Protein 4/genetics , Retinoblastoma-Binding Protein 4/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism
8.
Sci Rep ; 7(1): 7149, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769052

ABSTRACT

We have engineered streptavidin labelled Europium doped fluorescent silica nanoparticles which significantly increased sensitivity without compromising the specificity of the immunoassay. As a proof of concept, a time resolved fluorescence based sandwich immunoassay was developed to detect HIV-1 p24 antigen in clinical specimens. The detection range of the silica nanoparticle based immunoassay (SNIA) was found to be between 0.02 to 500 pg/mL in a linear dose dependent manner. SNIA offers 1000 fold enhancement over conventional colorimetric ELISA. Testing of plasma samples that were HIV negative showed no false positive results in the detection of HIV-1 p24 antigen. This highly sensitive p24 assay can help improve blood safety by reducing the antibody negative window period in blood donors in resource limited settings where nucleic acid testing is not practical or feasible. This technology can also be easily transferred to a lab-on-a-chip platform for use in resource limited settings and can also be easily adopted for the detection of other antigens.


Subject(s)
HIV Infections/diagnosis , HIV Infections/virology , HIV-1 , Immunoassay , Nanoparticles , Silicon Dioxide , Antigens, Viral/immunology , Carboxylic Acids/chemistry , Europium/chemistry , HIV Core Protein p24/immunology , HIV Infections/immunology , HIV-1/immunology , Humans , Immunoassay/methods , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Thermogravimetry/methods
9.
Viruses ; 8(5)2016 05 02.
Article in English | MEDLINE | ID: mdl-27144577

ABSTRACT

While human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2) share many similar traits, major differences in pathogenesis and clinical outcomes exist between the two viruses. The differential expression of host factors like microRNAs (miRNAs) in response to HIV-1 and HIV-2 infections are thought to influence the clinical outcomes presented by the two viruses. MicroRNAs are small non-coding RNA molecules which function in transcriptional and post-transcriptional regulation of gene expression. MiRNAs play a critical role in many key biological processes and could serve as putative biomarker(s) for infection. Identification of miRNAs that modulate viral life cycle, disease progression, and cellular responses to infection with HIV-1 and HIV-2 could reveal important insights into viral pathogenesis and provide new tools that could serve as prognostic markers and targets for therapeutic intervention. The aim of this study was to elucidate the differential expression profiles of host miRNAs in cells infected with HIV-1 and HIV-2 in order to identify potential differences in virus-host interactions between HIV-1 and HIV-2. Differential expression of host miRNA expression profiles was analyzed using the miRNA profiling polymerase chain reaction (PCR) arrays. Differentially expressed miRNAs were identified and their putative functional targets identified. The results indicate that hsa-miR 541-3p, hsa-miR 518f-3p, and hsa-miR 195-3p were consistently up-regulated only in HIV-1 infected cells. The expression of hsa-miR 1225-5p, hsa-miR 18a* and hsa-miR 335 were down modulated in HIV-1 and HIV-2 infected cells. Putative functional targets of these miRNAs include genes involved in signal transduction, metabolism, development and cell death.


Subject(s)
HIV-1/immunology , HIV-1/pathogenicity , HIV-2/immunology , HIV-2/pathogenicity , MicroRNAs/analysis , Cells, Cultured , Gene Expression Profiling , HIV Infections/virology , Host-Pathogen Interactions , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology
10.
PLoS One ; 11(1): e0147421, 2016.
Article in English | MEDLINE | ID: mdl-26821323

ABSTRACT

HIV replication is closely regulated by a complex pathway of host factors, many of them being determinants of cell tropism and host susceptibility to HIV infection. These host factors are known to exert a positive or negative influence on the replication of the two major types of HIV, HIV-1 and HIV-2, thereby modulating virus infectivity, host response to infection and ultimately disease progression profiles characteristic of these two types. Understanding the differential regulation of host cellular factors in response to HIV-1 and HIV-2 infections will help us to understand the apparent differences in rates of disease progression and pathogenesis. This knowledge would aid in the discovery of new biomarkers that may serve as novel targets for therapy and diagnosis. The objective of this study was to determine the differential expression of host genes in response to HIV-1/HIV-2 infection. To achieve this, we analyzed the effects of HIV-1 (MN) and HIV-2 (ROD) infection on the expression of host factors in PBMC at the RNA level using the Agilent Whole Human Genome Oligo Microarray. Differentially expressed genes were identified and their biological functions determined. Host gene expression profiles were significantly changed. Gene expression profiling analysis identified a subset of differentially expressed genes in HIV-1 and HIV-2 infected cells. Genes involved in cellular metabolism, apoptosis, immune cell proliferation and activation, cytokines, chemokines, and transcription factors were differentially expressed in HIV-1 infected cells. Relatively few genes were differentially expressed in cells infected with HIV-2.


Subject(s)
HIV Infections/genetics , HIV-1 , HIV-2 , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Apoptosis/genetics , Cell Proliferation/genetics , Chemokines/genetics , Cytokines/genetics , Gene Expression Profiling , HIV Infections/metabolism , HIV Infections/virology , Host-Pathogen Interactions/genetics , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , RNA, Messenger/genetics , Transcriptome
11.
Biosens Bioelectron ; 61: 177-83, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-24880655

ABSTRACT

Rapid, sensitive and specific diagnostic assays play an indispensable role in determination of HIV infection stages and evaluation of efficacy of antiretroviral therapy. Recently, our laboratory developed a sensitive Europium nanoparticle-based microtiter-plate immunoassay capable of detecting target analytes at subpicogram per milliliter levels without the use of catalytic enzymes and signal amplification processes. Encouraged by its sensitivity and simplicity, we continued to miniaturize this assay to a microchip platform for the purpose of converting the benchtop assay technique to a point-of-care test. It was found that detection capability of the microchip platform could be readily improved using Europium nanoparticle probes. We were able to routinely detect 5 pg/mL (4.6 attomoles) of HIV-1 p24 antigen at a signal-to-blank ratio of 1.5, a sensitivity level reasonably close to that of microtiter-plate Europium nanoparticle assay. Meanwhile, use of the microchip platform effectively reduced sample/reagent consumption 4.5 fold and shortened total assay time 2 fold in comparison with microtiter plate assays. Complex matrix substance in plasma negatively affected the microchip assays and the effects could be minimized by diluting the samples before loading. With further improvements in sensitivity, reproducibility, usability, assay process simplification, and incorporation of portable time-resolved fluorescence reader, Europium nanoparticle immunoassay technology could be adapted to meet the challenges of point-of-care diagnosis of HIV or other health-threatening pathogens at bedside or in resource-limited settings.


Subject(s)
Antigens, Viral/analysis , Biosensing Techniques/instrumentation , Europium/chemistry , HIV Infections/diagnosis , HIV-1/isolation & purification , Nanoparticles/chemistry , Point-of-Care Systems , Antigens, Viral/blood , HIV Infections/blood , Humans , Immunoassay/instrumentation , Reproducibility of Results , Sensitivity and Specificity
12.
Mol Cell Biochem ; 393(1-2): 181-90, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24752353

ABSTRACT

Fas-associated protein with death domain (FADD) is a key adaptor molecule transmitting the death signal mediated by death receptors, and it is also required for T cell proliferation. A recent study indicated that FADD is able to affect HIV-1 production, but the mechanism is not known. Using the susceptible Jurkat cell line and peripheral blood mononuclear cells, we studied the effects of FADD on HIV-1 production. TaqMan RT-PCR was used to quantify HIV-1 viral RNA copies, and Western blot analysis was used to detect protein expression. FADD knockdown decreased HIV-1 replication and inactivated caspase-3 activity in the cells and blocked CD4 translocation to the lipid rafts of the plasma membrane. Reduced expression of FADD suppressed TCR signaling through downregulation of TCR, CD3, and Zap-70 in response to HIV-1 infection and blocked the trafficking of TCR, CD3, CD28, and Zap-70 to lipid rafts, leading to reduced activation of NF-κB and NFAT, which are required for HIV-1 replication. FADD knockdown diminished caspase-8 migration to lipid rafts and its expression in response to HIV-1 infection. These results indicate that FADD, as a host pro-apoptotic protein, plays important roles in regulating HIV-1 replication and production in several ways, and apoptotic pathway inhibition is able to decrease HIV-1 replication and production.


Subject(s)
Fas-Associated Death Domain Protein/metabolism , HIV Infections/genetics , HIV-1/genetics , Virus Replication/genetics , Cell Proliferation/genetics , Fas-Associated Death Domain Protein/genetics , Gene Knockdown Techniques , HIV Infections/pathology , HIV Infections/virology , HIV-1/growth & development , HIV-1/pathogenicity , Humans , Jurkat Cells , Leukocytes, Mononuclear/metabolism , Membrane Microdomains/metabolism , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...