Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Pharmacol ; 103: 104282, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37769889

ABSTRACT

The presence of particles fixed in tissue samples due to implant degradation or disintegration plays an important role in post-operative complications. The ability to determine the size, shape, chemical composition and, above all, the number of these particles can be used in many areas of medicine. This study presents a novel, simple metal-based particle detection method using scanning electron microscopy with energy dispersive spectrometer (SEM-EDS). The presence of metal particles in biopsy specimens from long bone nail-fixated implants (10 patients with titanium steel nails and 10 patients with stainless steel nails) was studied. The samples were analysed using automated area analysis based on image binarization and brightness to 255 grayscale. The results were supplemented with histological data and statistically analysed. The method based on the software used was found to be accurate and easy to use and, thus, appears to be very suitable for particle detection in similar samples.

2.
Chemosphere ; 343: 140301, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37769922

ABSTRACT

Considering the well documented, almost ubiquitous nature of microplastics in different environments, the exposure of pregnant women to microplastics may pose risks to the unborn children. The study focused on investigating the presence of microplastics in amniotic fluid and placenta, and brings the first evidence of the simultaneous presence of microplastics and additives in both human amniotic fluid and placentas. In total, 20 samples of amniotic fluid and placenta from 10 patients were analyzed for the presence of microplastics and plastic additives by Fourier transform infrared spectroscopy - attenuated total reflectance (FTIR-ATR) after alkaline digestion with KOH. In 9 out of 10 patients, microplastics or additives were found in amniotic fluid, placenta, or both. Specifically, 44 particles of microplastics and polymer additives were identified in all samples. Chlorinated Polyethylene (CPE) and Calcium zinc PVC Stabilizer with particle sizes between 10 and 50 µm prevailed. Although all women involved in this study, who provided placenta and amniotic fluid samples, experienced physiological, singleton pregnancies complicated with preterm prelabour rupture of membranes (PPROM), it is too early to draw any conclusions and more research is needed.

3.
Water Res ; 244: 120538, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37666150

ABSTRACT

Climate change is creating new challenges for water supply worldwide, making the search for new sources of water vital. As mine water could serve as a potential source, this study investigated the presence of microplastics in water from terminated deep mines in the largest coal basin in the Czech Republic, as well as in water from nearby shallow wells. The particles found were analyzed for size, polymer composition, color and morphology using the ImageJ tool, infrared spectroscopy with Fourier transform (FTIR) and an optical stereomicroscope with a digital camera. Microplastics were detected in all tested sites. Their range accounted for 2.5-17.5 items/L for mine water samples and 2.5-20 items/L for well samples, with fibers being the dominant type. The average width of particles from mine water and wells amounted to 58 µm; 71 µm, length to 655 µm; 501 µm and area to 22,067 µm2; 28,613 µm2, respectively. Blue color was prevalent, among materials, in both cases, plastic coated paper was found dominant to Polyethylene terephthalate (PET), Polyester (PES), Tetrafluoroethylene-perfluoro (Propyl Vinyl Ether) - Copolymer (TFE-PPVE), and polypropylene (PP). The research provides the first evidence of microplastics' presence in underground waters from deep mines and shallow wells in the same area. The data suggest that it is almost impossible to find underground water sources free of microplastic contamination. In this context, atmospheric contamination from mine ventilation and infiltration through terminated mines were identified as potential sources, while infiltration through soil and rock formations is unlikely given the geological composition. The results of this study can serve as a relevant basis for further research on microplastics in mine waters. Additionally, the conclusions can advance the development in remediation technologies of microplastics from deep underground waters and their implementation in practice, particularly in light of upcoming legislation.


Subject(s)
Coal Mining , Microplastics , Plastics , Czech Republic , Water
4.
Article in English | MEDLINE | ID: mdl-34300059

ABSTRACT

Plastic particles smaller than 5 mm, i.e., microplastics, have been detected in a number of environments. The number of studies on microplastics in marine environments, fresh water, wastewater, the atmosphere, and the human body are increasing along with a rise in the amounts of plastic materials introduced into the environment every year, all contributing to a range of health and environmental issues. Although the use of primary microplastics has been gradually reduced by recent legislation in many countries, new knowledge and data on these problems are needed to understand the overall lifecycle of secondary microplastics in particular. The aim of this review is to provide unified information on the pathways of microplastics into the environment, their degradation, and related legislation, with a special focus on the methods of their sampling, determination, and instrumental analysis. To deal with the health and environmental issues associated with the abundance of microplastics in the environment, researchers should focus on agreeing on a uniform methodology to determine the gravity of the problem through obtaining comparable data, thus leading to new and stricter legislation enforcing more sustainable plastic production and recycling, and hopefully contributing to reversing the trend of high amounts of microplastics worldwide.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Fresh Water , Humans , Plastics , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...