Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 23(1): e202100414, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34643018

ABSTRACT

l-2-Haloacid dehalogenases, industrially and environmentally important enzymes that catalyse cleavage of the carbon-halogen bond in S-2-halocarboxylic acids, were known to hydrolyse chlorinated, brominated and iodinated substrates but no activity towards fluorinated compounds had been reported. A screen for novel dehalogenase activities revealed four l-2-haloacid dehalogenases capable of defluorination. We now report crystal structures for two of these enzymes, Bpro0530 and Rha0230, as well as for the related proteins PA0810 and RSc1362, which hydrolyse chloroacetate but not fluoroacetate, all at ∼2.2 Šresolution. Overall structure and active sites of these enzymes are highly similar. In molecular dynamics (MD) calculations, only the defluorinating enzymes sample more compact conformations, which in turn allow more effective interactions with the small fluorine atom. Structural constraints, based on X-ray structures and MD calculations, correctly predict the defluorination activity of the homologous enzyme ST2570.


Subject(s)
Hydrolases/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Halogenation , Hydrolases/chemistry , Hydrolases/isolation & purification , Molecular Dynamics Simulation , Protein Conformation , Sequence Alignment
2.
Chemistry ; 25(49): 11416-11421, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31407832

ABSTRACT

Trypanothione reductase (TR) plays a key role in the unique redox metabolism of trypanosomatids, the causative agents of human African trypanosomiasis (HAT), Chagas' disease, and leishmaniases. Introduction of a new, lean propargylic vector to a known class of TR inhibitors resulted in the strongest reported competitive inhibitor of Trypanosoma (T.) brucei TR, with an inhibition constant Ki of 73 nm, which is fully selective against human glutathione reductase (hGR). The best ligands exhibited in vitro IC50 values (half-maximal inhibitory concentration) against the HAT pathogen, T. brucei rhodesiense, in the mid-nanomolar range, reaching down to 50 nm. X-Ray co-crystal structures confirmed the binding mode of the ligands and revealed the presence of a HEPES buffer molecule in the large active site. Extension of the propargylic vector, guided by structure-based design, to replace the HEPES buffer molecule should give inhibitors with low nanomolar Ki and IC50 values for in vivo studies.


Subject(s)
Drug Design , Enzyme Inhibitors/chemistry , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Trypanosoma brucei brucei/enzymology , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Inhibitory Concentration 50 , Ligands , Molecular Dynamics Simulation , NADH, NADPH Oxidoreductases/metabolism , Protozoan Proteins/metabolism , Structure-Activity Relationship
3.
Cancer Cell ; 35(5): 721-737.e9, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31056398

ABSTRACT

The mitochondrial caseinolytic protease P (ClpP) plays a central role in mitochondrial protein quality control by degrading misfolded proteins. Using genetic and chemical approaches, we showed that hyperactivation of the protease selectively kills cancer cells, independently of p53 status, by selective degradation of its respiratory chain protein substrates and disrupts mitochondrial structure and function, while it does not affect non-malignant cells. We identified imipridones as potent activators of ClpP. Through biochemical studies and crystallography, we show that imipridones bind ClpP non-covalently and induce proteolysis by diverse structural changes. Imipridones are presently in clinical trials. Our findings suggest a general concept of inducing cancer cell lethality through activation of mitochondrial proteolysis.


Subject(s)
Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Mitochondria/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Endopeptidase Clp/chemistry , Female , HCT116 Cells , HEK293 Cells , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Imidazoles , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Models, Molecular , Point Mutation , Protein Conformation/drug effects , Proteolysis , Pyridines , Pyrimidines , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
4.
J Biol Chem ; 294(13): 4911-4923, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30705093

ABSTRACT

Prions are infectious protein aggregates that cause several fatal neurodegenerative diseases. Prion research has been hindered by a lack of cellular paradigms for studying the replication of prions from different species. Although hamster prions have been widely used to study prion replication in animals and within in vitro amplification systems, they have proved challenging to propagate in cultured cells. Because the murine catecholaminergic cell line CAD5 is susceptible to a diverse range of mouse prion strains, we hypothesized that it might also be capable of propagating nonmouse prions. Here, using CRISPR/Cas9-mediated genome engineering, we demonstrate that CAD5 cells lacking endogenous mouse PrP expression (CAD5-PrP-/- cells) can be chronically infected with hamster prions following stable expression of hamster PrP. When exposed to the 263K, HY, or 139H hamster prion strains, these cells stably propagated high levels of protease-resistant PrP. Hamster prion replication required absence of mouse PrP, and hamster PrP inhibited the propagation of mouse prions. Cellular homogenates from 263K-infected cells exhibited prion seeding activity in the RT-QuIC assay and were infectious to naïve cells expressing hamster PrP. Interestingly, murine N2a neuroblastoma cells ablated for endogenous PrP expression were susceptible to mouse prions, but not hamster prions upon expression of cognate PrP, suggesting that CAD5 cells either possess cellular factors that enhance or lack factors that restrict the diversity of prion strains that can be propagated. We conclude that transfected CAD5-PrP-/- cells may be a useful tool for assessing the biology of prion strains and dissecting the mechanism of prion replication.


Subject(s)
Prions/metabolism , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Cricetinae , Gene Editing , Mice , Prions/genetics
5.
Leukemia ; 33(1): 37-51, 2019 01.
Article in English | MEDLINE | ID: mdl-29884901

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy for which new therapeutic approaches are required. One such potential therapeutic strategy is to target the ubiquitin-like modifier-activating enzyme 1 (UBA1), the initiating enzyme in the ubiquitylation cascade in which proteins are tagged with ubiquitin moieties to regulate their degradation or function. Here, we evaluated TAK-243, a first-in-class UBA1 inhibitor, in preclinical models of AML. In AML cell lines and primary AML samples, TAK-243 induced cell death and inhibited clonogenic growth. In contrast, normal hematopoietic progenitor cells were more resistant. TAK-243 preferentially bound to UBA1 over the related E1 enzymes UBA2, UBA3, and UBA6 in intact AML cells. Inhibition of UBA1 with TAK-243 decreased levels of ubiquitylated proteins, increased markers of proteotoxic stress and DNA damage stress. In vivo, TAK-243 reduced leukemic burden and targeted leukemic stem cells without evidence of toxicity. Finally, we selected populations of AML cells resistant to TAK-243 and identified missense mutations in the adenylation domain of UBA1. Thus, our data demonstrate that TAK-243 targets AML cells and stem cells and support a clinical trial of TAK-243 in this patient population. Moreover, we provide insight into potential mechanisms of acquired resistance to UBA1 inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Nucleosides/pharmacology , Sulfonamides/pharmacology , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Xenograft Model Antitumor Assays , Animals , Cell Proliferation/drug effects , Endoplasmic Reticulum Stress/drug effects , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Mice , Mice, SCID , Pyrazoles , Pyrimidines , Sulfides , Tumor Cells, Cultured
6.
Sci Rep ; 8(1): 8654, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29872131

ABSTRACT

At times, it can be difficult to discern if a lack of overlap in reported interactions for a protein-of-interest reflects differences in methodology or biology. In such instances, systematic analyses of protein-protein networks across diverse paradigms can provide valuable insights. Here, we interrogated the interactome of the prion protein (PrP), best known for its central role in prion diseases, in four mouse cell lines. Analyses made use of identical affinity capture and sample processing workflows. Negative controls were generated from PrP knockout lines of the respective cell models, and the relative levels of peptides were quantified using isobaric labels. The study uncovered 26 proteins that reside in proximity to PrP. All of these proteins are predicted to have access to the outer face of the plasma membrane, and approximately half of them were not reported to interact with PrP before. Strikingly, although several proteins exhibited profound co-enrichment with PrP in a given model, except for the neural cell adhesion molecule 1, no protein was highly enriched in all PrP-specific interactomes. However, Gene Ontology analyses revealed a shared association of the majority of PrP candidate interactors with cellular events at the intersection of transforming growth factor ß and integrin signaling.


Subject(s)
Integrins/metabolism , Prion Proteins/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Animals , Cell Line , Mice , Prion Proteins/genetics , Protein Interaction Mapping , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL
...