Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Interferon Cytokine Res ; 43(9): 379-393, 2023 09.
Article in English | MEDLINE | ID: mdl-37253131

ABSTRACT

Autoantibodies (AABs) neutralizing type I interferons (IFN) underlie about 15% of cases of critical coronavirus disease 2019 (COVID-19) pneumonia. The impact of autoimmunity toward type III IFNs remains unexplored. We included samples from 1,002 patients with COVID-19 (50% with severe disease) and 1,489 SARS-CoV-2-naive individuals. We studied the prevalence and neutralizing capacity of AABs toward IFNλ and IFNα. Luciferase-based immunoprecipitation method was applied using pooled IFNα (subtypes 1, 2, 8, and 21) or pooled IFNλ1-IFNλ3 as antigens, followed by reporter cell-based neutralization assay. In the SARS-CoV-2-naive cohort, IFNλ AABs were more common (8.5%) than those targeting IFNα2 (2.9%) and were related with older age. In the COVID-19 cohort the presence of autoreactivity to IFNλ did not associate with severe disease [odds ratio (OR) 0.84; 95% confidence interval (CI) 0.40-1.73], unlike to IFNα (OR 4.88; 95% CI 2.40-11.06; P < 0.001). Most IFNλ AAB-positive COVID-19 samples (67%) did not neutralize any of the 3 IFNλ subtypes. Pan-IFNλ neutralization occurred in 5 patients (0.50%), who all suffered from severe COVID-19 pneumonia, and 4 of them neutralized IFNα2 in addition to IFNλ. Overall, AABs to type III IFNs are rarely neutralizing, and do not seem to predispose to severe COVID-19 pneumonia on their own.


Subject(s)
COVID-19 , Interferon Type I , Humans , Interferon Lambda , SARS-CoV-2 , Autoantibodies , Interferon-alpha , Interferons
2.
Cell Rep Med ; 4(1): 100894, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36652906

ABSTRACT

Systemic lupus erythematosus (SLE) is characterized by increased expression of type I interferon (IFN)-regulated genes in 50%-75% of patients. We report that out of 501 patients with SLE analyzed, 73 (14%) present autoantibodies against IFNα (anti-IFN-Abs). The presence of neutralizing-anti-IFN-Abs in 4.2% of patients inversely correlates with low circulating IFNα protein levels, inhibition of IFN-I downstream gene signatures, and inactive global disease score. Hallmarks of SLE pathogenesis, including increased immature, double-negative plasmablast B cell populations and reduction in regulatory B cell (Breg) frequencies, were normalized in patients with neutralizing anti-IFN-Abs compared with other patient groups. Immunoglobulin G (IgG) purified from sera of patients with SLE with neutralizing anti-IFN-Abs impedes CpGC-driven IFNα-dependent differentiation of B cells into immature B cells and plasmablasts, thus recapitulating the neutralizing effect of anti-IFN-Abs on B cell differentiation in vitro. Our findings highlight a role for neutralizing anti-IFN-Abs in controlling SLE pathogenesis and support the use of IFN-targeting therapies in patients with SLE lacking neutralizing-anti-IFN-Abs.


Subject(s)
B-Lymphocyte Subsets , Interferon Type I , Lupus Erythematosus, Systemic , Humans , Autoantibodies , B-Lymphocyte Subsets/metabolism , Interferon-alpha/therapeutic use , Interferon-alpha/genetics , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/genetics
3.
Cell Rep Med ; 3(8): 100716, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35952669

ABSTRACT

The high number of mutations in the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes its immune escape. We report a longitudinal analysis of 111 vaccinated individuals for their antibody levels up to 6 months after the third dose of the BNT162b2 vaccine. After the third dose, the antibody levels decline but less than after the second dose. The booster dose remarkably increases the serum ability to block wild-type or Omicron variant spike protein's receptor-binding domain (RBD) interaction with the angiotensin-converting enzyme 2 (ACE2) receptor, and these protective antibodies persist 3 months later. Three months after the booster dose, memory CD4+ and CD8+ T cells to the wild-type and Omicron variant are detectable in the majority of vaccinated individuals. Our data show that the third dose restores the high levels of blocking antibodies and enhances T cell responses to Omicron.


Subject(s)
COVID-19 , Vaccines , Antibodies , BNT162 Vaccine , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/chemistry
4.
Proc Natl Acad Sci U S A ; 119(21): e2200413119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35576468

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ß are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.


Subject(s)
Antibodies, Neutralizing , Autoantibodies , Autoimmunity , COVID-19 , Interferon Type I , SARS-CoV-2 , Adult , Age Factors , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Autoantibodies/blood , COVID-19/immunology , COVID-19/mortality , Female , Humans , Interferon Type I/immunology , Male , Middle Aged , Risk
5.
Res Sq ; 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35043109

ABSTRACT

SARS-CoV-2 infection fatality rate (IFR) doubles with every five years of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ß are found in ~20% of deceased patients across age groups. In the general population, they are found in ~1% of individuals aged 20-70 years and in >4% of those >70 years old. With a sample of 1,261 deceased patients and 34,159 uninfected individuals, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to non-carriers. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRD was 17.0[95% CI:11.7-24.7] for individuals under 70 years old and 5.8[4.5-7.4] for individuals aged 70 and over, whereas, for autoantibodies neutralizing both molecules, the RRD was 188.3[44.8-774.4] and 7.2[5.0-10.3], respectively. IFRs increased with age, from 0.17%[0.12-0.31] for individuals <40 years old to 26.7%[20.3-35.2] for those ≥80 years old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84%[0.31-8.28] to 40.5%[27.82-61.20] for the same two age groups, for autoantibodies neutralizing both molecules. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, particularly those neutralizing both IFN-α2 and -ω. Remarkably, IFR increases with age, whereas RRD decreases with age. Autoimmunity to type I IFNs appears to be second only to age among common predictors of COVID-19 death.

6.
Lancet Reg Health Eur ; 10: 100208, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34514454

ABSTRACT

BACKGROUND: SARS-CoV-2 mRNA vaccines have proven high efficacy, however, limited data exists on the duration of immune responses and their relation to age and side effects. METHODS: We studied the antibody and memory T cell responses after the two-dose BNT162b2 vaccine in 122 volunteers up to 6 months and correlated the findings with age and side effects. FINDINGS: We found a robust antibody response to Spike protein after the second dose. However, the antibody levels declined at 12 weeks and 6 months post-vaccination, indicating a waning of the immune response over time. At 6 months after the second dose, the Spike antibody levels were similar to the levels in persons vaccinated with one dose or in COVID-19 convalescent individuals. The antibodies efficiently blocked ACE2 receptor binding to SARS-CoV-2 Spike protein of five variants of concern at one week but this was decreased at three months. 87% of individuals developed Spike-specific memory T cell responses, which were lower in individuals with increased proportions of immunosenescent CD8+ TEMRA cells. We found antibody response to correlate negatively with age and positively with the total score of vaccination side effects. INTERPRETATION: The mRNA vaccine induces a strong antibody response to SARS-CoV-2 and five VOCs at 1 week post-vaccination that decreases thereafter. T cell responses, although detectable in the majority, were lower in individuals with higher T cell immunosenescence. The deterioration of vaccine response suggests the need to monitor for the potential booster vaccination.

7.
Vaccine ; 39(38): 5376-5384, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34393019

ABSTRACT

PURPOSE: In Estonia, during the first wave of COVID-19 total number of cases confirmed by PCR was 13.3/10,000, similar in most regions, including capital Tallinn, but in the hotspot of Estonian epidemic, an island Saaremaa, the cumulative incidence was 166.1/10,000. We aimed to determine the prevalence of SARS-CoV-2 IgG antibodies in these two regions, symptoms associated with infection and factors associated with antibody concentrations. METHODS: Participants were selected using stratified (formed by age decades) random sampling and recruited by general practitioners. IgG or neutralizing antibodies were determined from sera by four assays. Symptoms associated with seropositivity were analyzed by multiple correspondence analysis, antibody concentrations by multiple linear regression. RESULTS: Total of 3608 individual were invited and 1960 recruited from May 8 to July 31, 2020. Seroprevalence was 1.5% (95% confidence interval (CI) 0.9-2.5) and 6.3% (95% CI 5.0-7.9), infection fatality rate 0.1% (95% CI 0.0-0.2) and 1.3% (95% CI 0.4-2.1) in Tallinn and Saaremaa, respectively. Of seropositive subjects 19.2% (14/73) had acute respiratory illness. Fever, diarrhea and the absence of cough and runny nose were associated with seropositivity in individuals aged 50 or more years. IgG, but not neutralizing antibodies concentrations were higher if fever, difficulty breathing, shortness of breath, chest pain or diarrhea was present, or hospitalization required. CONCLUSION: Similarly to other European countries the seroprevalence of SARS-CoV-2 in Estonia was low even in the hotspot region Saaremaa suggesting that majority of population is susceptible to SARS-CoV-2. Focusing only on respiratory symptoms may delay accurate diagnosis of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Estonia/epidemiology , Humans , Immunoglobulin G , Prevalence , Seroepidemiologic Studies
8.
Sci Immunol ; 6(62)2021 08 19.
Article in English | MEDLINE | ID: mdl-34413139

ABSTRACT

Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/mL, in plasma diluted 1 to 10) of IFN-α and/or -ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days-99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-ß. We also show, in a sample of 34,159 uninfected subjects from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or -ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals <70 years, 2.3% between 70 and 80 years, and 6.3% >80 years. By contrast, auto-Abs neutralizing IFN-ß do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Interferon Type I/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Autoantibodies/blood , COVID-19/mortality , Case-Control Studies , Child , Child, Preschool , Critical Illness , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Infant, Newborn , Interferon-alpha/immunology , Middle Aged , Young Adult
9.
Cytokine ; 144: 155533, 2021 08.
Article in English | MEDLINE | ID: mdl-33941444

ABSTRACT

Type I interferons are essential for host response to viral infections, while dysregulation of their response can result in autoinflammation or autoimmunity. Among IFNα (alpha) responses, 13 subtypes exist that signal through the same receptor, but have been reported to have different effector functions. However, the lack of available tools for discriminating these closely related subtypes, in particular at the protein level, has restricted the study of their differential roles in disease. We developed a digital ELISA with specificity and high sensitivity for the IFNα2 subtype. Application of this assay, in parallel with our previously described pan-IFNα assay, allowed us to study different IFNα protein responses following cellular stimulation and in diverse patient cohorts. We observed different ratios of IFNα protein responses between viral infection and autoimmune patients. This analysis also revealed a small percentage of autoimmune patients with high IFNα2 protein measurements but low pan-IFNα measurements. Correlation with an ISG score and functional activity showed that in this small sub group of patients, IFNα2 protein measurements did not reflect its biological activity. This unusual phenotype was partly explained by the presence of anti-IFNα auto-antibodies in a subset of autoimmune patients. This study reports ultrasensitive assays for the study of IFNα proteins in patient samples and highlights the insights that can be obtained from the use of multiple phenotypic readouts in translational and clinical studies.


Subject(s)
Antiviral Agents/immunology , Autoimmunity/immunology , Interferon-alpha/immunology , Virus Diseases/immunology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult
10.
J Transl Autoimmun ; 4: 100093, 2021.
Article in English | MEDLINE | ID: mdl-33748735

ABSTRACT

Increased interferon-α (IFN-α) production is a critical component in the pathophysiology of systemic lupus erythematosus (SLE) and other rheumatic autoimmune diseases. Herein, we report the characterization of S95021, a fully human IgG1 anti-IFN-α monoclonal antibody (mAb) as a novel therapeutic candidate for targeted patient populations. S95021 was expressed in CHOZN GS-/- cells, purified by chromatography and characterized by using electrophoresis, size exclusion chromatography and liquid chromatography-mass spectrometry. High purity S95021 was obtained as a monomeric entity comprising different charge variants mainly due to N-glycosylation. Surface plasmon resonance kinetics experiments showed strong association rates with all IFN-α subtypes and estimated KDs below picomolar values. Pan-IFN-α-binding properties were confirmed by immunoprecipitation assays and neutralization capacity with reporter HEK-Blue IFN-α/ß cells. S95021 was IFN-α-selective and exhibited superior potency and broader neutralization profile when compared with the benchmark anti-IFN-α mAbs rontalizumab and sifalimumab. STAT-1 phosphorylation and the type I IFN gene signature induced in human peripheral blood mononuclear cells by recombinant IFN-α subtypes or plasmas from selected autoimmune patients were efficiently reduced by S95021 in a dose-dependent manner. Together, our results show that S95021 is a new potent, selective and pan IFN-α-neutralizing mAb. It is currently further evaluated as a valid therapeutic candidate in selected autoimmune diseases in which the IFN-α pro-inflammatory pathway is dysregulated.

11.
Sci Rep ; 10(1): 20533, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239683

ABSTRACT

SARS-CoV-2 infection has a risk to develop into life-threatening COVID-19 disease. Whereas age, hypertension, and chronic inflammatory conditions are risk factors, underlying host factors and markers for disease severity, e.g. requiring intensive care unit (ICU) treatment, remain poorly defined. To this end, we longitudinally profiled blood inflammation markers, antibodies, and 101 plasma proteins of hospitalized COVID-19 patients who did or did not require ICU admission. While essentially all patients displayed SARS-CoV-2-specific antibodies and virus-neutralization capacity within 12-15 days, a rapid, mostly transient upregulation of selective inflammatory markers including IL-6, CXCL10, CXCL11, IFNγ, IL-10, and monocyte-attracting CCL2, CCL7 and CCL8, was particularly evident in ICU patients. In addition, there was consistent and sustained upregulation of apoptosis-associated proteins CASP8, TNFSF14, HGF, and TGFB1, with HGF discriminating between ICU and non-ICU cohorts. Thus, COVID-19 is associated with a selective inflammatory milieu within which the apoptotic pathway is a cardinal feature with potential to aid risk-based patient stratification.


Subject(s)
Apoptosis , COVID-19 Testing/methods , COVID-19/blood , COVID-19/diagnosis , Caspase 8/blood , Chemokines/blood , Proteome , SARS-CoV-2/genetics , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/virology , Female , Hospitalization , Humans , Inflammation/blood , Intensive Care Units , Longitudinal Studies , Male , Middle Aged , Proteomics/methods , Risk Factors , Up-Regulation , Young Adult
13.
PLoS One ; 15(10): e0237548, 2020.
Article in English | MEDLINE | ID: mdl-33108380

ABSTRACT

SARS-CoV-2 antibody tests are available in various formats, detecting different viral target proteins and antibody subclasses. The specificity and sensitivity of SARS-CoV-2 antibody tests are known to vary and very few studies have addressed the performance of these tests in COVID-19 patient groups at different time points. We here compared the sensitivity and specificity of seven commercial (SNIBE, Epitope, Euroimmun, Roche, Abbott, DiaSorin, Biosensor) and two in-house LIPS assays (LIPS N and LIPS S-RBD) IgG/total Ab tests in serum samples from 97 COVID-19 patients and 100 controls, and correlated the results with the patients' clinical data and the time-point the test was performed. We found a remarkable variation in the sensitivity of antibody tests with the following performance: LIPS N (91.8%), Epitope (85.6%), Abbott and in-house LIPS S-RBD (both 84.5%), Roche (83.5%), Euroimmun (82.5%), DiaSorin (81.4%), SNIBE (70.1%), and Biosensor (64.9%). The overall agreement between the tests was between 71-95%, whereas the specificity of all tests was within 98-100%. The correlation with patients' clinical symptoms score ranged from strongest in LIPS N (ρ = 0.41; p<0.001) to nonsignificant in LIPS S-RBD. Furthermore, the time of testing since symptom onset had an impact on the sensitivity of some tests. Our study highlights the importance to consider clinical symptoms, time of testing, and using more than one viral antigen in SARS-CoV-2 antibody testing. Our results suggest that some antibody tests are more sensitive for the detection of antibodies in early stage and asymptomatic patients, which may explain the contradictory results of previous studies and should be taken into consideration in clinical practice and epidemiological studies.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques , Coronavirus Infections/immunology , Immunoglobulin G/blood , Pandemics , Pneumonia, Viral/immunology , Serologic Tests/methods , Adult , Age Factors , Aged , Aged, 80 and over , Antibody Specificity , Antigens, Viral/immunology , Asymptomatic Infections/epidemiology , COVID-19 , COVID-19 Testing , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Disease Progression , False Positive Reactions , Female , Humans , Male , Middle Aged , Pneumonia, Viral/blood , RNA, Viral/blood , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Symptom Assessment , Young Adult
14.
Science ; 370(6515)2020 10 23.
Article in English | MEDLINE | ID: mdl-32972996

ABSTRACT

Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-ω (IFN-ω) (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.


Subject(s)
Autoantibodies/blood , Coronavirus Infections/immunology , Interferon Type I/immunology , Interferon alpha-2/immunology , Pneumonia, Viral/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Asymptomatic Infections , Betacoronavirus , COVID-19 , Case-Control Studies , Critical Illness , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Pandemics , SARS-CoV-2
16.
Nat Med ; 26(10): 1623-1635, 2020 10.
Article in English | MEDLINE | ID: mdl-32807934

ABSTRACT

Improved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies. Some signature traits identify links with other settings of immunoprotection and immunopathology; others, including basophil and plasmacytoid dendritic cell depletion, correlate strongly with disease severity; while a third set of traits, including a triad of IP-10, interleukin-10 and interleukin-6, anticipate subsequent clinical progression. Hence, contingent upon independent validation in other COVID-19 cohorts, individual traits within this signature may collectively and individually guide treatment options; offer insights into COVID-19 pathogenesis; and aid early, risk-based patient stratification that is particularly beneficial in phasic diseases such as COVID-19.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , Coronavirus Infections/immunology , Cytokines/immunology , Dendritic Cells/immunology , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Aged , B-Lymphocyte Subsets/immunology , Basophils/immunology , Betacoronavirus , COVID-19 , Case-Control Studies , Cell Cycle , Chemokine CXCL10/immunology , Chemokines/immunology , Cohort Studies , Coronavirus Infections/blood , Disease Progression , Female , Flow Cytometry , Hospitalization , Humans , Immunologic Memory , Immunophenotyping , Interleukin-10/immunology , Interleukin-6/immunology , Leukocyte Count , Lymphocyte Activation/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Prognosis , SARS-CoV-2 , Severity of Illness Index , T-Lymphocyte Subsets/immunology , Up-Regulation
17.
Eur J Immunol ; 50(8): 1234-1236, 2020 08.
Article in English | MEDLINE | ID: mdl-32584420

ABSTRACT

Profiling antibodies to SARS-CoV-2 can help to assess potential immune response after COVID-19 disease. Luciferase IP system (LIPS) assay is a sensitive method for quantitative detection of antibodies to antigens in their native conformation. We here describe LIPS to detect antibody responses to SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in COVID-19 patients. The antibodies targeted both S and N fragments and gave a high assay sensitivity by identifying 26 out of 26 COVID-19 patients with N antigen or with three protein fragments when combined into a single reaction. The assay correlated well with ELISA method and was specific to COVID-19 as we saw no reactivity among uninfected healthy controls. Our results show that LIPS is a rapid and measurable method to screen antibody responses against SARS-CoV-2 antigens.


Subject(s)
Antibodies, Viral , Betacoronavirus , Coronavirus Infections , Nucleocapsid Proteins , Pandemics , Pneumonia, Viral , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/immunology , Female , Humans , Male , Middle Aged , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/metabolism , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , SARS-CoV-2
18.
Front Immunol ; 11: 838, 2020.
Article in English | MEDLINE | ID: mdl-32477345

ABSTRACT

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by recessive mutations in the AIRE gene. The hallmark of the disease is the production of highly neutralizing autoantibodies against type I interferons and IL-22. Considering the importance of IL-22 in maintaining mucosal barrier integrity and shaping its microbial community, we sought to study potential changes in the oral cavity in this model of human IL-22 paucity. We found that besides known Th22 cell deficiency, APECED patients have significantly fewer circulating MAIT cells with potential IL-22 secreting capacity. Saliva samples from APECED patients revealed local inflammation, the presence of autoantibodies against IFN-α and IL-22, and alterations in the oral microbiota. Moreover, gene expression data of buccal biopsy samples suggested impaired antimicrobial response and cell proliferation, both of which are processes regulated by IL-22. Our data complement the knowledge gained from mouse models and support the concept of IL-22 being a critical homeostatic cytokine in human mucosal sites.


Subject(s)
Interleukins/deficiency , Interleukins/immunology , Microbiota/immunology , Mouth/immunology , Mouth/microbiology , Polyendocrinopathies, Autoimmune/immunology , Adolescent , Adult , Autoantibodies/immunology , Biopsy , Child , Female , Gene Expression Regulation/immunology , Humans , Inflammation , Interferon-alpha/immunology , Male , Mouth/pathology , Mutation , Saliva/immunology , Young Adult , Interleukin-22
19.
Aging Cell ; 19(4): e13127, 2020 04.
Article in English | MEDLINE | ID: mdl-32107839

ABSTRACT

Age-related changes at the cellular level include the dysregulation of metabolic and signaling pathways. Analyses of blood leukocytes have revealed a set of alterations that collectively lower their ability to fight infections and resolve inflammation later in life. We studied the transcriptomic, epigenetic, and metabolomic profiles of monocytes extracted from younger adults and individuals over the age of 65 years to map major age-dependent changes in their cellular physiology. We found that the monocytes from older persons displayed a decrease in the expression of ribosomal and mitochondrial protein genes and exhibited hypomethylation at the HLA class I locus. Additionally, we found elevated gene expression associated with cell motility, including the CX3CR1 and ARID5B genes, which have been associated with the development of atherosclerosis. Furthermore, the downregulation of two genes, PLA2G4B and ALOX15B, which belong to the arachidonic acid metabolism pathway involved in phosphatidylcholine conversion to anti-inflammatory lipoxins, correlated with increased phosphatidylcholine content in monocytes from older individuals. We found age-related changes in monocyte metabolic fitness, including reduced mitochondrial function and increased glycose consumption without the capacity to upregulate it during increased metabolic needs, and signs of increased oxidative stress and DNA damage. In conclusion, our results complement existing findings and elucidate the metabolic alterations that occur in monocytes during aging.


Subject(s)
Monocytes/metabolism , Phospholipids/metabolism , Adult , Aged , Aged, 80 and over , Cellular Senescence , Energy Metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...