Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Toxics ; 11(4)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37112594

ABSTRACT

Paracetamol (acetaminophen, APAP) is the most common non-prescription analgesic drug used during pregnancy. The aim of this study was to investigate the effect of vitamin E on acute APAP toxicity in pregnant rats. Toxicity in the liver, kidney, and brain (hippocampus, cerebellum, and olfactory bulb) was examined. Twenty pregnant female Wistar rats at gestational day 18 were used. Pregnant rats were divided into four groups: Control, APAP, E + APAP, and APAP + E. The Control group was treated with 0.5 mL p.o. corn oil. The APAP group received 3000 mg/kg p.o. APAP. The E + APAP group received 300 mg/kg p.o. vitamin E one hour before 3000 mg/kg APAP. The APAP + E group received 3000 mg/kg paracetamol one hour before 300 mg/kg p.o. vitamin E. Twenty-four hours after the last treatment administration, rats were euthanized and blood, brain, liver, and kidney samples were collected. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine levels, uric acid (UA), and superoxide dismutase (SOD) levels, as well as the relative mRNA expression of Cyp1a4, Cyp2d6, and Nat2, were determined. Acute APAP treatment upregulated ALT, AST, BUN, and creatinine levels. APAP treatment downregulated UA and SOD levels. APAP treatment upregulated the relative mRNA expression of Cyp1a4 and Cyp2d6, but downregulated Nat2 expression. Vitamin E treatment, either before or after APAP administration, attenuated the toxic effects of APAP. In conclusion, the results showed that an acute toxic APAP dose in late pregnancy can cause oxidative stress and dysregulation in Cyp isoform expression, and that vitamin E treatment attenuates these effects.

2.
EBioMedicine ; 61: 103066, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33096475

ABSTRACT

BACKGROUND: Slow neurotransmission including DARPP-32 signalling is implicated in substance use disorders (SUDs) by experimental systems but not yet in the human aetiology. PPP1R12B, encoding another protein in the DARPP-32 family, hasn't been studied in the brain. METHODS: Brain-regional gene activity was assessed in three different animal models of SUDs for mRNA level alterations. Genetic associations were assessed by meta-analysis of pre-existing dbGaP GWAS datasets for main effects and epistasis with known genetic risks, followed by cell type-specific pathway delineation. Parkinson's disease (PD) was included as a dopamine-related disease control for SUDs. FINDINGS: In animal models of SUDs, environmentally-altered PPP1R12B expression sex-dependently involves motivation-related brain regions. In humans with polysubstance abuse, meta-analysis of pre-existing datasets revealed that PPP1R12B and PPP1R1B, although expressed in dopamine vs. dopamine-recipient neurons, exerted similar interactions with known genetic risks such as ACTR1B and DRD2 in men but with ADH1B, HGFAC and DRD3 in women. These interactions reached genome-wide significances (Pmeta<10-20) for SUDs but not for PD (disease selectivity: P = 4.8 × 10-142, OR = 6.7 for PPP1R12B; P = 8.0 × 10-8, OR = 2.1 for PPP1R1B). CADM2 was the common risk in the molecular signalling regardless of gender and cell type. INTERPRETATION: Gender-dependant slow neurotransmission may convey both genetic and environmental vulnerabilities selectively to SUDs. FUNDING: Grants from National Institute on Drug Abuse (NIDA) and National Institute on Alcohol Abuse and Alcoholism (NIAAA) of U.S.A. and National Natural Science Foundation of China (NSFC).


Subject(s)
Dopamine and cAMP-Regulated Phosphoprotein 32/genetics , Epistasis, Genetic , Protein Phosphatase 1/genetics , Substance-Related Disorders/etiology , Synaptic Transmission/genetics , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Disease Susceptibility , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Female , Gene Expression Regulation , Gene Regulatory Networks , Genetic Heterogeneity , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Mice , Organ Specificity/genetics , Protein Phosphatase 1/metabolism , Rats , Sex Factors , Substance-Related Disorders/diagnosis , Substance-Related Disorders/metabolism
3.
ACS Chem Neurosci ; 11(17): 2761-2773, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32786314

ABSTRACT

Photoaffinity labeling (PAL) remains one of the most widely utilized methods of determining protein targets of drugs. Although useful, the scope of this technique has been limited to in vitro applications because of the inability of UV light to penetrate whole organisms. Herein, pigment-free Casper zebrafish were employed to allow in vivo PAL. A methamphetamine-related phenethylamine PAL probe, designated here as 2, demonstrated dose-dependent effects on behavior similar to methamphetamine and permitted concentration-dependent labeling of protein binding partners. Click chemistry was used to analyze binding partners via fluoroimaging. Conjugation to a biotin permitted streptavidin pull-down and proteomic analysis to define direct binding partners of the methamphetamine probe. Bioinformatic analysis revealed the probe was chiefly bound to proteins involved in phagocytosis and mitochondrial function. Future applications of this experimental paradigm combining examination of drug-protein binding interactions alongside neurobehavioral readouts via in vivo PAL will significantly enhance our understanding of drug targets, mechanism(s) of action, and toxicity/lethality.


Subject(s)
Methamphetamine , Zebrafish , Animals , Photoaffinity Labels , Proteins , Proteomics
5.
Addict Biol ; 19(3): 343-53, 2014 May.
Article in English | MEDLINE | ID: mdl-22780223

ABSTRACT

We have previously shown that a haplotype associated with decreased NrCAM expression in brain is protective against addiction vulnerability for polysubstance abuse in humans and that Nrcam knockout mice do not develop conditioned place preferences for morphine, cocaine or amphetamine. In order to gain insight into NrCAM involvement in addiction vulnerability, which may involve specific neural circuits underlying behavioral characteristics relevant to addiction, we evaluated several behavioral phenotypes in Nrcam knockout mice. Consistent with a potential general reduction in motivational function, Nrcam knockout mice demonstrated less curiosity for novel objects and for an unfamiliar conspecific, showed also less anxiety in the zero maze. Nrcam heterozygote knockout mice reduced alcohol preference and buried fewer marbles in home cage. These observations provide further support for a role of NrCAM in substance abuse including alcoholism vulnerability, possibly through its effects on behavioral traits that may affect addiction vulnerability, including novelty seeking, obsessive compulsion and responses to aversive or anxiety-provoking stimuli. Additionally, in order to prove glutamate homeostasis hypothesis of addiction, we analyzed glutamatergic molecules regulated by NRCAM expression. Glutaminase appears to be involved in NrCAM-related molecular pathway in two different tissues from human and mouse. An inhibitor of the enzyme, prolyl-leucyl-glycinamide, treatment produced, at least, some of the phenotypes of mice shown in alcohol preference and in anxiety-like behavior. Thus, NrCAM could affect addiction-related behaviors via at least partially modulation of some glutamatergic pathways and neural function in brain.


Subject(s)
Behavior, Addictive/physiopathology , Cell Adhesion Molecules/physiology , Adaptation, Psychological/drug effects , Alcohol Drinking/physiopathology , Analgesics, Opioid/pharmacology , Animals , Anxiety/physiopathology , Central Nervous System Depressants/pharmacology , Conditioning, Psychological/drug effects , Ethanol/pharmacology , Exploratory Behavior/drug effects , MSH Release-Inhibiting Hormone/pharmacology , Male , Maze Learning/drug effects , Mice, Inbred C57BL , Mice, Knockout , Morphine/pharmacology , Reaction Time/drug effects , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL