Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Psychiatry ; 24(1): 433, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858652

ABSTRACT

BACKGROUND: Objective and quantifiable markers are crucial for developing novel therapeutics for mental disorders by 1) stratifying clinically similar patients with different underlying neurobiological deficits and 2) objectively tracking disease trajectory and treatment response. Schizophrenia is often confounded with other psychiatric disorders, especially bipolar disorder, if based on cross-sectional symptoms. Awake and sleep EEG have shown promise in identifying neurophysiological differences as biomarkers for schizophrenia. However, most previous studies, while useful, were conducted in European and American populations, had small sample sizes, and utilized varying analytic methods, limiting comprehensive analyses or generalizability to diverse human populations. Furthermore, the extent to which wake and sleep neurophysiology metrics correlate with each other and with symptom severity or cognitive impairment remains unresolved. Moreover, how these neurophysiological markers compare across psychiatric conditions is not well characterized. The utility of biomarkers in clinical trials and practice would be significantly advanced by well-powered transdiagnostic studies. The Global Research Initiative on the Neurophysiology of Schizophrenia (GRINS) project aims to address these questions through a large, multi-center cohort study involving East Asian populations. To promote transparency and reproducibility, we describe the protocol for the GRINS project. METHODS: The research procedure consists of an initial screening interview followed by three subsequent sessions: an introductory interview, an evaluation visit, and an overnight neurophysiological recording session. Data from multiple domains, including demographic and clinical characteristics, behavioral performance (cognitive tasks, motor sequence tasks), and neurophysiological metrics (both awake and sleep electroencephalography), are collected by research groups specialized in each domain. CONCLUSION: Pilot results from the GRINS project demonstrate the feasibility of this study protocol and highlight the importance of such research, as well as its potential to study a broader range of patients with psychiatric conditions. Through GRINS, we are generating a valuable dataset across multiple domains to identify neurophysiological markers of schizophrenia individually and in combination. By applying this protocol to related mental disorders often confounded with each other, we can gather information that offers insight into the neurophysiological characteristics and underlying mechanisms of these severe conditions, informing objective diagnosis, stratification for clinical research, and ultimately, the development of better-targeted treatment matching in the clinic.


Subject(s)
Electroencephalography , Schizophrenia , Adult , Female , Humans , Male , Biomarkers , Cohort Studies , Electroencephalography/methods , Neurophysiology/methods , Research Design , Schizophrenia/physiopathology , Schizophrenia/diagnosis , Sleep/physiology , Cross-Sectional Studies , Middle Aged , Aged
2.
Schizophr Bull ; 50(4): 827-838, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38635296

ABSTRACT

BACKGROUND: Cortical thickness (CT) alterations, mismatch negativity (MMN) reductions, and cognitive deficits are robust findings in first-episode psychosis (FEP). However, most studies focused on medicated patients, leaving gaps in our understanding of the interrelationships between CT, MMN, neurocognition, and psychosocial functioning in unmedicated FEP. This study aimed to employ multiple mediation analysis to investigate potential pathways among these variables in unmedicated drug-naïve FEP. METHODS: We enrolled 28 drug-naïve FEP and 34 age and sex-matched healthy controls. Clinical symptoms, neurocognition, psychosocial functioning, auditory duration MMN, and T1 structural magnetic resonance imaging data were collected. We measured CT in the superior temporal gyrus (STG), a primary MMN-generating region. RESULTS: We found a significant negative correlation between MMN amplitude and bilateral CT of STG (CT_STG) in FEP (left: r = -.709, P < .001; right: r = -.612, P = .008). Multiple mediation models revealed that a thinner left STG cortex affected functioning through both direct (24.66%) and indirect effects (75.34%). In contrast, the effects of the right CT_STG on functioning were mainly mediated through MMN and neurocognitive pathways. CONCLUSIONS: Bilateral CT_STG showed significant association with MMN, and MMN plays a mediating role between CT and cognition. Both MMN alone and its interaction with cognition mediated the effects of structural alterations on psychosocial function. The decline in overall function in FEP may stem from decreased CT_STG, leading to subsequent MMN deficits and neurocognitive dysfunction. These findings underline the crucial role of MMN in elucidating how subtle structural alterations can impact neurocognition and psychosocial function in FEP.


Subject(s)
Cognitive Dysfunction , Magnetic Resonance Imaging , Psychosocial Functioning , Psychotic Disorders , Humans , Male , Psychotic Disorders/physiopathology , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/pathology , Female , Adult , Young Adult , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Temporal Lobe/physiopathology , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Evoked Potentials, Auditory/physiology , Electroencephalography , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Cerebral Cortex/pathology , Brain Cortical Thickness , Adolescent , Auditory Perception/physiology , Mediation Analysis
3.
bioRxiv ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38234726

ABSTRACT

Background: Multiple facets of sleep neurophysiology, including electroencephalography (EEG) metrics such as non-rapid eye movement (NREM) spindles and slow oscillations (SO), are altered in individuals with schizophrenia (SCZ). However, beyond group-level analyses which treat all patients as a unitary set, the extent to which NREM deficits vary among patients is unclear, as are their relationships to other sources of heterogeneity including clinical factors, illness duration and ageing, cognitive profiles and medication regimens. Using newly collected high density sleep EEG data on 103 individuals with SCZ and 68 controls, we first sought to replicate our previously reported (Kozhemiako et. al, 2022) group-level mean differences between patients and controls (original N=130). Then in the combined sample (N=301 including 175 patients), we characterized patient-to-patient variability in NREM neurophysiology. Results: We replicated all group-level mean differences and confirmed the high accuracy of our predictive model (Area Under the ROC Curve, AUC = 0.93 for diagnosis). Compared to controls, patients showed significantly increased between-individual variability across many (26%) sleep metrics, with patterns only partially recapitulating those for group-level mean differences. Although multiple clinical and cognitive factors were associated with NREM metrics including spindle density, collectively they did not account for much of the general increase in patient-to-patient variability. Medication regimen was a greater (albeit still partial) contributor to variability, although original group mean differences persisted after controlling for medications. Some sleep metrics including fast spindle density showed exaggerated age-related effects in SCZ, and patients exhibited older predicted biological ages based on an independent model of ageing and the sleep EEG. Conclusion: We demonstrated robust and replicable alterations in sleep neurophysiology in individuals with SCZ and highlighted distinct patterns of effects contrasting between-group means versus within-group variances. We further documented and controlled for a major effect of medication use, and pointed to greater age-related change in NREM sleep in patients. That increased NREM heterogeneity was not explained by standard clinical or cognitive patient assessments suggests the sleep EEG provides novel, nonredundant information to support the goals of personalized medicine. Collectively, our results point to a spectrum of NREM sleep deficits among SCZ patients that can be measured objectively and at scale, and that may offer a unique window on the etiological and genetic diversity that underlies SCZ risk, treatment response and prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL