Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38003345

ABSTRACT

Phospholipase A2 (PLA2) enzymes influence inflammatory bowel disease in both positive and negative manners depending on the type of PLA2 that is expressed. This study explored the influence of the abundantly expressed Group 1B PLA2 (PLA2G1B) on ulcerative colitis. Wild-type C57BL/6J mice and Pla2g1b-/- mice were treated with dextran sulfate sodium (DSS) for 5 days to induce epithelial injury, followed by another 5 days without DSS for recovery. The Pla2g1b-/- mice displayed significantly less body weight loss, colitis pathology, and disease activity indexes compared to the wild-type mice. The differences in colitis were not due to differences in the colonic lysophospholipid levels, but higher numbers of stem and progenitor cells were found in the intestines of Pla2g1b-/- mice compared to the wild-type mice. The DSS-treated Pla2g1b-/- mice also showed higher expressions of genes that are responsible for epithelial repair and lower expressions of proinflammatory cytokine genes in the colon, as well as reduced inflammatory cytokine levels in the plasma. In vitro experiments revealed the PLA2G1B stimulation of inflammatory cytokine expression by myeloid cells. PLA2G1B inactivation protects against DSS-induced colitis in mice by increasing the intestinal stem cell reservoir for epithelial repair and reducing myeloid cell inflammation in the diseased colon. Thus, PLA2G1B may be a target for colitis management.


Subject(s)
Colitis, Ulcerative , Colitis , Mice , Animals , Group IB Phospholipases A2/metabolism , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/genetics , Colitis/metabolism , Colon/pathology , Colitis, Ulcerative/metabolism , Phospholipases A2/genetics , Phospholipases A2/metabolism , Cytokines/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Intestinal Mucosa/metabolism
2.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R55-R68, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37212552

ABSTRACT

This study explored the role of apoE receptor-2 (apoER2), a unique member of the LDL receptor family proteins with a restricted tissue expression profile, in modulating diet-induced obesity and diabetes. Unlike wild-type mice and humans in which chronic feeding of a high-fat Western-type diet leads to obesity and the prediabetic state of hyperinsulinemia before hyperglycemia onset, the Lrp8-/- mice with global apoER2 deficiency displayed lower body weight and adiposity, slower development of hyperinsulinemia, but the accelerated onset of hyperglycemia. Despite their lower adiposity, adipose tissues in Western diet-fed Lrp8-/- mice were more inflamed compared with wild-type mice. Additional experiments revealed that the hyperglycemia observed in Western diet-fed Lrp8-/- mice was due to impaired glucose-induced insulin secretion, ultimately leading to hyperglycemia, adipocyte dysfunction, and inflammation upon chronic feeding of the Western diet. Interestingly, bone marrow-specific apoER2-deficient mice were not defective in insulin secretion, exhibiting increased adiposity and hyperinsulinemia compared with wild-type mice. Analysis of bone marrow-derived macrophages revealed that apoER2 deficiency impeded inflammation resolution with lower secretion of IFN-ß and IL-10 in response to LPS stimulation of IL-4 primed cells. The apoER2-deficient macrophages also showed an increased level of disabled-2 (Dab2) as well as increased cell surface TLR4, suggesting that apoER2 participates in Dab2 regulation of TLR4 signaling. Taken together, these results showed that apoER2 deficiency in macrophages sustains diet-induced tissue inflammation and accelerates obesity and diabetes onset while apoER2 deficiency in other cell types contributes to hyperglycemia and inflammation via defective insulin secretion.


Subject(s)
Hyperglycemia , Hyperinsulinism , Insulin Resistance , Animals , Humans , Mice , Adipose Tissue/metabolism , Bone Marrow/metabolism , Diet , Diet, High-Fat , Hyperglycemia/metabolism , Hyperinsulinism/genetics , Inflammation/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/metabolism , Receptors, LDL , Toll-Like Receptor 4/metabolism
3.
Sci Transl Med ; 14(663): eadd2376, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36130017

ABSTRACT

Accumulation of lipid-laden foam cells in the arterial wall plays a central role in atherosclerotic lesion development, plaque progression, and late-stage complications of atherosclerosis. However, there are still fundamental gaps in our knowledge of the underlying mechanisms leading to foam cell formation in atherosclerotic arteries. Here, we investigated the role of receptor-independent macropinocytosis in arterial lipid accumulation and pathogenesis of atherosclerosis. Genetic inhibition of fluid-phase macropinocytosis in myeloid cells (LysMCre+ Nhe1fl/fl) and repurposing of a Food and Drug Administration (FDA)-approved drug that inhibits macrophage macropinocytosis substantially decreased atherosclerotic lesion development in low-density lipoprotein (LDL) receptor-deficient and Apoe-/- mice. Stimulation of macropinocytosis using genetic (H-RASG12V) and physiologically relevant approaches promoted internalization of unmodified native (nLDL) and modified [e.g., acetylated (ac) and oxidized (ox) LDL] lipoproteins in both wild-type and scavenger receptor (SR) knockout (Cd36-/-/Sra-/-) macrophages. Pharmacological inhibition of macropinocytosis in hypercholesterolemic wild-type and Cd36-/-/Sra-/- mice identified an important role of macropinocytosis in LDL uptake by lesional macrophages and development of atherosclerosis. Furthermore, serial section high-resolution imaging, LDL immunolabeling, and three-dimensional (3D) reconstruction of subendothelial foam cells provide visual evidence of lipid macropinocytosis in both human and murine atherosclerotic arteries. Our findings complement the SR paradigm of atherosclerosis and identify a therapeutic strategy to counter the development of atherosclerosis and cardiovascular disease.


Subject(s)
Atherosclerosis , Foam Cells , Animals , Apolipoproteins E/genetics , Arteries/pathology , Atherosclerosis/pathology , CD36 Antigens , Foam Cells/metabolism , Foam Cells/pathology , Humans , Lipoproteins, LDL/metabolism , Mice , Mice, Knockout
4.
J Biol Chem ; 297(3): 101106, 2021 09.
Article in English | MEDLINE | ID: mdl-34425108

ABSTRACT

Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport-dependent and lipid transport-independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE-/- mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE-/- mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport-independent manner.


Subject(s)
Apolipoprotein E2/metabolism , Apolipoprotein E4/metabolism , Atherosclerosis/genetics , Animals , Apolipoprotein E2/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Female , Humans , Inflammation , Lipoproteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cells/metabolism , Signal Transduction
5.
J Lipid Res ; 62: 100012, 2021.
Article in English | MEDLINE | ID: mdl-33500241

ABSTRACT

The impairment of LDL receptor-related protein-1 (LRP1) in numerous cell types is associated with obesity, diabetes, and fatty liver disease. Here, we compared the metabolic phenotype of C57BL/6J wild-type and LRP1 knock-in mice carrying an inactivating mutation in the distal NPxY motif after feeding a low-fat diet or high-fat (HF) diet with cholesterol supplementation (HFHC) or HF diet without cholesterol supplementation. In response to HF feeding, both groups developed hyperglycemia, hyperinsulinemia, hyperlipidemia, increased adiposity, and adipose tissue inflammation and liver steatosis. However, LRP1 NPxY mutation prevents HFHC diet-induced hypercholesterolemia, reduces adipose tissue and brain inflammation, and limits liver progression to steatohepatitis. Nevertheless, this mutation does not protect against HFHC diet-induced insulin resistance. The selective metabolic improvement observed in HFHC diet-fed LRP1 NPxY mutant mice is due to an apparent increase of hepatic LDL receptor levels, leading to an elevated rate of plasma lipoprotein clearance and lower hepatic cholesterol levels. The unique metabolic phenotypes displayed by LRP1 NPxY mutant mice indicate an LRP1-cholesterol axis in modulating tissue inflammation. The LRP1 NPxY mutant mouse phenotype differs from phenotypes observed in mice with tissue-specific LRP1 inactivation, thus highlighting the importance of an integrative approach to evaluate how global LRP1 dysfunction contributes to metabolic disease development.


Subject(s)
Cholesterol, Dietary
6.
BMC Med Genet ; 21(1): 234, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33228548

ABSTRACT

BACKGROUND: Autosomal dominant familial hypercholesterolemia (ADH; MIM#143890) is one of the most common monogenic disorders characterized by elevated circulatory LDL cholesterol. Initial studies in humans with ADH identified a potential relationship with variants of the gene encoding signal transducing adaptor family member protein 1 (STAP1; MIM#604298). However, subsequent studies have been contradictory. In this study, mice lacking global Stap1 expression (Stap1-/-) were characterized under standard chow and a 42% kcal western diet (WD). METHODS: Mice were studied for changes in different metabolic parameters before and after a 16-week WD regime. Growth curves, body fats, circulatory lipids, parameters of glucose homeostasis, and liver architecture were studied for comparisons. RESULTS: Surprisingly, Stap1-/- mice fed the 16-week WD demonstrated no marked differences in any of the metabolic parameters compared to Stap1+/+ mice. Furthermore, hepatic architecture and cholesterol content in FPLC-isolated lipoprotein fractions also remained comparable to wild-type mice. CONCLUSION: These results strongly suggest that STAP1 does not alter lipid levels, that a western diet did not exacerbate a lipid disorder in Stap1 deficient mice and support the contention that it is not causative for hyperlipidemia in ADH patients. These results support other published studies also questioning the role of this locus in human hypercholesterolemia.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cholesterol, LDL/blood , Diet, Western , Triglycerides/blood , Adaptor Proteins, Signal Transducing/deficiency , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Female , Gene Expression , Humans , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
Diabetologia ; 62(10): 1928-1937, 2019 10.
Article in English | MEDLINE | ID: mdl-31414143

ABSTRACT

AIMS/HYPOTHESIS: Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two peptides that function to promote insulin secretion. Dipeptidyl peptidase-4 (DPP-4) inhibitors increase the bioavailability of both GLP-1 and GIP but the dogma continues to be that it is the increase in GLP-1 that contributes to the improved glucose homeostasis. We have previously demonstrated that pancreatic rather than intestinal GLP-1 is necessary for improvements in glucose homeostasis in mice. Therefore, we hypothesise that a combination of pancreatic GLP-1 and GIP is necessary for the full effect of DPP-4 inhibitors on glucose homeostasis. METHODS: We have genetically engineered mouse lines in which the preproglucagon gene (Gcg) is absent in the entire body (GcgRAΔNull) or is expressed exclusively in the intestine (GcgRAΔVilCre) or pancreas and duodenum (GcgRAΔPDX1Cre). These mice were used to examine oral glucose tolerance and GLP-1 and GIP responses to a DPP-4 inhibitor alone, or in combination with incretin receptor antagonists. RESULTS: Administration of the DPP-4 inhibitor, linagliptin, improved glucose tolerance in GcgRAΔNull mice and control littermates and in GcgRAΔVilCre and GcgRAΔPDX1Cre mice. The potent GLP-1 receptor antagonist, exendin-[9-39] (Ex9), blunted improvements in glucose tolerance in linagliptin-treated control mice and in GcgRAΔPDX1Cre mice. Ex9 had no effect on glucose tolerance in linagliptin-treated GcgRAΔNull or in GcgRAΔVilCre mice. In addition to GLP-1, linagliptin also increased postprandial plasma levels of GIP to a similar degree in all genotypes. When linagliptin was co-administered with a GIP-antagonising antibody, the impact of linagliptin was partially blunted in wild-type mice and was fully blocked in GcgRAΔNull mice. CONCLUSIONS/INTERPRETATION: Taken together, these data suggest that increases in pancreatic GLP-1 and GIP are necessary for the full effect of DPP-4 inhibitors on glucose tolerance.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Animals , Blood Glucose/drug effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Linagliptin/pharmacology , Male , Mice , Pancreas/drug effects , Pancreas/metabolism , Postprandial Period , Proglucagon/pharmacology
8.
Mol Metab ; 17: 28-38, 2018 11.
Article in English | MEDLINE | ID: mdl-30170980

ABSTRACT

OBJECTIVE: Mice with congenital loss of the glucagon receptor gene (Gcgr-/- mice) remain normoglycemic in insulinopenic conditions, suggesting that unopposed glucagon action is the driving force for hyperglycemia in Type-1 Diabetes Mellitus (T1DM). However, chronic loss of GCGR results in a neomorphic phenotype that includes hormonal signals with hypoglycemic activity. We combined temporally-controlled GCGR deletion with pharmacological treatments to dissect the direct contribution of GCGR signaling to glucose control in a common mouse model of T1DM. METHODS: We induced experimental T1DM by injecting the beta-cell cytotoxin streptozotocin (STZ) in mice with congenital or temporally-controlled Gcgr loss-of-function using tamoxifen (TMX). RESULTS: Disruption of Gcgr expression, using either an inducible approach in adult mice or animals with congenital knockout, abolished the response to a long-acting Gcgr agonist. Mice with either developmental Gcgr disruption or inducible deletion several weeks before STZ treatment maintained normoglycemia. However, mice with inducible knockout of the Gcgr one week after the onset of STZ diabetes had only partial correction of hyperglycemia, an effect that was reversed by GLP-1 receptor blockade. Mice with Gcgr deletion for either 2 or 6 weeks had similar patterns of gene expression, although the changes were generally larger with longer GCGR knockout. CONCLUSIONS: These findings demonstrate that the effects of glucagon to mitigate diabetic hyperglycemia are not through acute signaling but require compensations that take weeks to develop.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Hyperglycemia/genetics , Receptors, Glucagon/genetics , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Gene Expression Regulation/genetics , Glucagon/metabolism , Glucagon/physiology , Glucagon-Like Peptide-1 Receptor/metabolism , Hyperglycemia/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Knockout , Receptors, Glucagon/metabolism , Streptozocin/pharmacology , Transcriptome/genetics
9.
Cell Metab ; 25(4): 927-934.e3, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28325479

ABSTRACT

Glucagon-like peptide 1 (GLP-1) is necessary for normal gluco-regulation, and it has been widely presumed that this function reflects the actions of GLP-1 released from enteroendocrine L cells. To test the relative importance of intestinal versus pancreatic sources of GLP-1 for physiological regulation of glucose, we administered a GLP-1R antagonist, exendin-[9-39] (Ex9), to mice with tissue-specific reactivation of the preproglucagon gene (Gcg). Ex9 impaired glucose tolerance in wild-type mice but had no impact on Gcg-null or GLP-1R KO mice, suggesting that Ex9 is a true and specific GLP-1R antagonist. Unexpectedly, Ex-9 had no effect on blood glucose in mice with restoration of intestinal Gcg. In contrast, pancreatic reactivation of Gcg fully restored the effect of Ex9 to impair both oral and i.p. glucose tolerance. These findings suggest an alternative model whereby islet GLP-1 also plays an important role in regulating glucose homeostasis.


Subject(s)
Glucose/metabolism , Homeostasis , Pancreas/metabolism , Proglucagon/metabolism , Administration, Oral , Animals , Female , Gastrointestinal Tract/metabolism , Gene Expression Regulation , Gene Targeting , Glucagon-Like Peptide-1 Receptor/metabolism , Glucose Tolerance Test , Injections, Intraperitoneal , Male , Mice, Inbred C57BL , Organ Specificity , Phenotype , Proglucagon/genetics , Reproducibility of Results
10.
Diabetes ; 64(2): 498-507, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25157093

ABSTRACT

Bariatric surgery is the most successful strategy for treating obesity, yet the mechanisms for this success are not clearly understood. Clinical literature suggests that plasma levels of apolipoprotein A-IV (apoA-IV) rise with Roux-en-Y gastric bypass (RYGB). apoA-IV is secreted from the intestine postprandially and has demonstrated benefits for both glucose and lipid homeostasis. Because of the parallels in the metabolic improvements seen with surgery and the rise in apoA-IV levels, we hypothesized that apoA-IV was necessary for obtaining the metabolic benefits of bariatric surgery. To test this hypothesis, we performed vertical sleeve gastrectomy (VSG), a surgery with clinical efficacy very similar to that for RYGB, in whole-body apoA-IV knockout (KO) mice. We found that VSG reduced body mass and improved both glucose and lipid homeostasis similarly in wild-type mice compared with apoA-IV KO mice. In fact, VSG normalized the impairment in glucose tolerance and caused a significantly greater improvement in hepatic triglyceride storage in the apoA-IV KO mice. Last, independent of surgery, apoA-IV KO mice had a significantly reduced preference for a high-fat diet. Altogether, these data suggest that apoA-IV is not necessary for the metabolic improvements shown with VSG, but also suggest an interesting role for apoA-IV in regulating macronutrient preference and hepatic triglyceride levels. Future studies are necessary to determine whether this is the case for RYGB as well.


Subject(s)
Apolipoproteins A/metabolism , Gastrectomy/methods , Glucose/metabolism , Homeostasis/physiology , Animals , Apolipoproteins A/genetics , Blood Glucose , Body Weight , Dietary Carbohydrates , Dietary Fats/adverse effects , Dietary Proteins , Gene Expression Regulation/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Am J Physiol Endocrinol Metab ; 307(11): E1065-72, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25315695

ABSTRACT

Vertical sleeve gastrectomy (VSG) is currently one of the most effective treatments for obesity. Despite recent developments, the underlying mechanisms that contribute to the metabolic improvements following bariatric surgery remain unresolved. VSG reduces postprandial intestinal triglyceride (TG) production, but whether the effects of VSG on intestinal metabolism are related to metabolic outcomes has yet to be established. The lipid synthesis enzyme acyl CoA:monoacylglycerol acyltransferase-2 (Mogat2; MGAT2) plays a crucial role in the assimilation of dietary fat in the intestine and in regulation of adiposity stores as well. Given the phenotypic similarities between VSG-operated and MGAT2-deficient animals, we reasoned that this enzyme could also have a key role in mediating the metabolic benefits of VSG. However, VSG reduced body weight and fat mass and improved glucose metabolism similarly in whole body MGAT2-deficient (Mogat2(-/-)) mice and wild-type littermates. Furthermore, along with an increase in energy expenditure, surgically naive Mogat2(-/-) mice had altered macronutrient preference, shifting preference away from fat and toward carbohydrates, and increased locomotor activity. Collectively, these data suggest that the beneficial effects of VSG on body weight and glucose metabolism are independent of MGAT2 activity and rather that they are separate from the effects of MGAT2 deficiency. Because MGAT2 inhibitors are proposed as a pharmacotherapeutic option for obesity, our data suggest that, in addition to increasing energy expenditure, shifting macronutrient preference away from fat could be another important mechanism by which these compounds could contribute to weight loss.


Subject(s)
Gastrectomy , N-Acetylglucosaminyltransferases/deficiency , Animals , Body Composition , Body Weight , Diet, Fat-Restricted , Eating , Food Preferences , Male , Mice , Mice, Knockout , Obesity/genetics
12.
Diabetes ; 63(11): 3798-804, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24898144

ABSTRACT

Uroguanylin is a gastrointestinal hormone primarily involved in fluid and electrolyte handling. It has recently been reported that prouroguanylin, secreted postprandially, is converted to uroguanylin in the brain and activates the receptor guanylate cyclase-C (GC-C) to reduce food intake and prevent obesity. We tested central nervous system administration of two GC-C agonists and found no significant reduction of food intake. We also carefully phenotyped mice lacking the GC-C receptor and found them to have normal body weight, adiposity, and glucose tolerance. Interestingly, uroguanylin knockout mice had a small but significant increase in body weight and adiposity that was accompanied by glucose intolerance. Our data indicate that the modest effects of uroguanylin on energy and glucose homeostasis are not mediated by central GC-C receptors.


Subject(s)
Glucose/metabolism , Guanylate Cyclase/metabolism , Animals , Cyclic GMP/metabolism , Eating/drug effects , Energy Metabolism/drug effects , Male , Mice , Natriuretic Peptides/pharmacology , Rats , Receptors, Enterotoxin , Receptors, Guanylate Cyclase-Coupled/metabolism , Receptors, Peptide/metabolism
13.
Diabetologia ; 57(2): 383-91, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24190582

ABSTRACT

AIMS/HYPOTHESIS: Genome-wide association studies have revealed an association of the transcription factor ETS variant gene 5 (ETV5) with human obesity. However, its role in glucose homeostasis and energy balance is unknown. METHODS: Etv5 knockout (KO) mice were monitored weekly for body weight (BW) and food intake. Body composition was measured at 8 and 16 weeks of age. Glucose metabolism was studied, and glucose-stimulated insulin secretion was measured in vivo and in vitro. RESULTS: Etv5 KO mice are smaller and leaner, and have a reduced BW and lower fat mass than their wild-type controls on a chow diet. When exposed to a high-fat diet, KO mice are resistant to diet-induced BW gain. Despite a greater insulin sensitivity, KO mice have profoundly impaired glucose tolerance associated with impaired insulin secretion. Morphometric analysis revealed smaller islets and a reduced beta cell size in the pancreatic islets of Etv5 KO mice. Knockdown of ETV5 in an insulin-secreting cell line or beta cells from human donors revealed intact mitochondrial and Ca(2+) channel activity, but reduced insulin exocytosis. CONCLUSION/INTERPRETATION: This work reveals a critical role for ETV5 in specifically regulating insulin secretion both in vitro and in vivo.


Subject(s)
C-Peptide/metabolism , DNA-Binding Proteins/metabolism , Exocytosis/physiology , Glucose/metabolism , Homeostasis/physiology , Insulin/metabolism , Transcription Factors/metabolism , Animals , Body Composition , Body Weight , Diet, High-Fat , Eating , Genome-Wide Association Study , Glucose Tolerance Test , Insulin Resistance , Insulin Secretion , Mice , Mice, Knockout
14.
Endocrinology ; 151(6): 2603-12, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20351315

ABSTRACT

Bisphenol-A (BPA) is an endocrine-disrupting chemical used in the production of plastic food and beverage containers, leading to ubiquitous low-dose human exposure. It has been suggested that exposure to even low doses of BPA during development may be associated with increased susceptibility to obesity and diabetes later in life. Despite growing public concern, the existing empirical data are equivocal, prompting The Endocrine Society, the National Institute of Environmental Health Sciences, and others to call for further research. In this study, we tested the hypothesis that perinatal exposure to an ecologically relevant dose of BPA (1 part per billion via the diet) results in increased susceptibility to high-fat diet-induced obesity and glucose intolerance in adult CD-1 mice. The data did not support this hypothesis. In agreement with previous reports, we find that weanling mice exposed to BPA during gestation and lactation are heavier compared with control mice. We also find that BPA mice are longer than controls at 4 wk of age, but these differences are no longer apparent when the mice reach adulthood, even when tested on a high-fat diet. We conclude that this larger size-for-age represents a faster rate of growth early in development rather than an obese, diabetic phenotype in adulthood.


Subject(s)
Estrogens, Non-Steroidal/toxicity , Metabolic Syndrome/chemically induced , Metabolic Syndrome/etiology , Phenols/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Animals , Area Under Curve , Benzhydryl Compounds , Body Composition , Female , Glucose Tolerance Test , Male , Mice , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...