Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
ESMO Open ; 7(4): 100530, 2022 08.
Article in English | MEDLINE | ID: mdl-35921760

ABSTRACT

BACKGROUND: Activation of leukemia inhibitory factor (LIF) is linked to an immunosuppressive tumor microenvironment (TME), with a strong association between LIF expression and tumor-associated macrophages (TAMs). MSC-1 (AZD0171) is a humanized monoclonal antibody that binds with high affinity to LIF, promoting antitumor inflammation through TAM modulation and cancer stem cell inhibition, slowing tumor growth. In this phase I, first-in-human, open-label, dose-escalation study, MSC-1 monotherapy was assessed in patients with advanced, unresectable solid tumors. MATERIALS AND METHODS: Using accelerated-titration dose escalation followed by a 3 + 3 design, MSC-1 doses of 75-1500 mg were administered intravenously every 3 weeks (Q3W) until progression or unmanageable toxicity. Additional patients were enrolled in selected cohorts to further evaluate safety, pharmacokinetics (PK), and pharmacodynamics after escalation to the next dose had been approved. The primary objective was characterizing safety and determining the recommended phase II dose (RP2D). Evaluating antitumor activity and progression-free survival (PFS) by RECIST v1.1, PK and immunogenicity were secondary objectives. Exploratory objectives included pharmacodynamic effects on circulating LIF and TME immune markers. RESULTS: Forty-one patients received treatment. MSC-1 monotherapy was safe and well tolerated at all doses, with no dose-limiting toxicities. The maximum tolerated dose was not reached and the RP2D was determined to be 1500 mg Q3W. Almost half of the patients had treatment-related adverse events (TRAEs), with no apparent trends across doses; no patients withdrew due to TRAEs. There were no objective responses; 23.7% had stable disease for ≥2 consecutive tumor assessments. Median PFS was 5.9 weeks; 23.7% had PFS >16 weeks. On-treatment changes in circulating LIF and TME signal transducers and activators of transcription 3 signaling, M1:M2 macrophage populations, and CD8+ T-cell infiltration were consistent with the hypothesized mechanism of action. CONCLUSIONS: MSC-1 was very well tolerated across doses, with prolonged PFS in some patients. Biomarker and preclinical data suggest potential synergy with checkpoint inhibitors.


Subject(s)
Antineoplastic Agents , Neoplasms , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Humans , Maximum Tolerated Dose , Tumor Microenvironment
2.
Sci Rep ; 6: 27100, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27250534

ABSTRACT

The molecular control of cell fate and behaviour is a central theme in biology. Inherent heterogeneity within cell populations requires that control of cell fate is studied at the single-cell level. Time-lapse imaging and single-cell tracking are powerful technologies for acquiring cell lifetime data, allowing quantification of how cell-intrinsic and extrinsic factors control single-cell fates over time. However, cell lifetime data contain complex features. Competing cell fates, censoring, and the possible inter-dependence of competing fates, currently present challenges to modelling cell lifetime data. Thus far such features are largely ignored, resulting in loss of data and introducing a source of bias. Here we show that competing risks and concordance statistics, previously applied to clinical data and the study of genetic influences on life events in twins, respectively, can be used to quantify intrinsic and extrinsic control of single-cell fates. Using these statistics we demonstrate that 1) breast cancer cell fate after chemotherapy is dependent on p53 genotype; 2) granulocyte macrophage progenitors and their differentiated progeny have concordant fates; and 3) cytokines promote self-renewal of cardiac mesenchymal stem cells by symmetric divisions. Therefore, competing risks and concordance statistics provide a robust and unbiased approach for evaluating hypotheses at the single-cell level.


Subject(s)
Breast Neoplasms/genetics , Cell Lineage/genetics , Cell Tracking/statistics & numerical data , Gene Expression Regulation, Neoplastic , Single-Cell Analysis/statistics & numerical data , Tumor Suppressor Protein p53/genetics , Animals , Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Death/drug effects , Cell Differentiation , Cell Division/drug effects , Cell Line, Tumor , Cell Tracking/methods , Cytokines/pharmacology , Doxorubicin/pharmacology , Female , Genotype , Granulocyte-Macrophage Progenitor Cells/cytology , Granulocyte-Macrophage Progenitor Cells/metabolism , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Single-Cell Analysis/methods , Time-Lapse Imaging
3.
Oncogenesis ; 5: e208, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26999717

ABSTRACT

Triple-negative breast cancers (TNBCs) represent a subset of breast tumors that are highly aggressive and metastatic, and are responsible for a disproportionate number of breast cancer-related deaths. Several studies have postulated a role for the epithelial-to-mesenchymal transition (EMT) program in the increased aggressiveness and metastatic propensity of TNBCs. Although EMT is essential for early vertebrate development and wound healing, it is frequently co-opted by cancer cells during tumorigenesis. One prominent signaling pathway involved in EMT is the transforming growth factor-ß (TGFß) pathway. In this study, we report that the novel POZ-ZF transcription factor Kaiso is highly expressed in TNBCs and correlates with a shorter metastasis-free survival. Notably, Kaiso expression is induced by the TGFß pathway and silencing Kaiso expression in the highly invasive breast cancer cell lines, MDA-MB-231 (hereafter MDA-231) and Hs578T, attenuated the expression of several EMT-associated proteins (Vimentin, Slug and ZEB1), abrogated TGFß signaling and TGFß-dependent EMT. Moreover, Kaiso depletion attenuated the metastasis of TNBC cells (MDA-231 and Hs578T) in a mouse model. Although high Kaiso and high TGFßR1 expression is associated with poor overall survival in breast cancer patients, overexpression of a kinase-active TGFßR1 in the Kaiso-depleted cells was insufficient to restore the metastatic potential of these cells, suggesting that Kaiso is a key downstream component of TGFß-mediated pro-metastatic responses. Collectively, these findings suggest a critical role for Kaiso in TGFß signaling and the metastasis of TNBCs.

4.
Oncogene ; 34(15): 2003-10, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-24909172

ABSTRACT

Significant left-right (L-R) differences in tumor incidence and disease outcome occur for cancers of paired organs, including the breasts; however, the basis for this laterality is unknown. Here, we show that despite their morphologic symmetry, left versus right mammary glands in wild-type mice have baseline differences in gene expression that are L-R independently regulated during pubertal development, including genes that regulate luminal progenitor cell renewal, luminal cell differentiation, mammary tumorigenesis, tamoxifen sensitivity and chemotherapeutic resistance. In MMTV-cNeu(Tg/Tg) mice, which model HER2/Neu-amplified breast cancer, baseline L-R differences in mammary gene expression are amplified, sustained or inverted in a gene-specific manner and the mammary ductal epithelium undergoes L-R asymmetric growth and patterning. Comparative genomic analysis of mouse L-R mammary gene expression profiles with gene expression profiles of human breast tumors revealed significant linkage between right-sided gene expression and decreased breast cancer patient survival. Collectively, these findings are the first to demonstrate that mammary glands are lateralized organs, and, moreover, that mammary glands have L-R differential susceptibility to HER2/Neu oncogene-mediated effects on ductal epithelial growth and differentiation. We propose that intrinsic molecular laterality may have a role in L-R asymmetric breast tumor incidence and, furthermore, that interplay between the L-R molecular landscape and oncogene activity may contribute to the differential disease progression and patient outcome that are associated with tumor situs.


Subject(s)
Mammary Glands, Animal/growth & development , Mammary Neoplasms, Experimental/pathology , Animals , Breast Neoplasms/pathology , Cell Transformation, Neoplastic , Female , Gene Expression , Humans , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Glands, Human/growth & development , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mice , Signal Transduction
5.
Oncogene ; 31(1): 93-103, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-21666715

ABSTRACT

Human breast tumors comprise a minor sub-population of tumor-initiating cells (TICs), commonly termed cancer stem cells. TICs are thought to sustain tumor growth and to confer resistance to current anticancer therapies. Hence, targeting TIC may be essential to achieving durable cancer cures. To identify molecular targets in breast TIC, we employed a transgenic mouse model of ERBB2 breast cancer; tumors arising in this model comprise a very high frequency of TIC, which is maintained in tumor cell populations propagated in vitro as non-adherent tumorspheres. The Notch pathway is dysregulated in human breast tumors and overexpression of constitutively active Notch proteins induces mammary tumors in mice. The Notch pathway has also been implicated in stem cell processes including those of mammary epithelial stem cells. Hence, we investigated the potential that the Notch pathway is required for TIC activity. We found that an antagonist of Notch signaling, a gamma (γ)-secretase inhibitor termed MRK-003, inhibited the survival of tumorsphere-derived cells in vitro and eliminated TIC as assessed by cell transplantation into syngeneic mice. Whereas MRK-003 also inhibited the self-renewal and/or proliferation of mammosphere-resident cells, this effect of the inhibitor was reversible thus suggesting that it did not compromise the survival of these cells. MRK-003 administration to tumor-bearing mice eliminated tumor-resident TIC and resulted in rapid and durable tumor regression. MRK-003 inhibited the proliferation of tumor cells, and induced their apoptosis and differentiation. These findings suggest that MRK-003 targets breast TIC and illustrate that eradicating these cells in breast tumors ensures long-term, recurrence-free survival.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Cyclic S-Oxides/therapeutic use , Enzyme Inhibitors/therapeutic use , Genes, erbB-2 , Mammary Neoplasms, Experimental/drug therapy , Neoplastic Stem Cells/drug effects , Thiadiazoles/therapeutic use , Animals , Cyclic S-Oxides/pharmacology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Female , Gene Expression Profiling , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Receptors, Notch/physiology , Thiadiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL