Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34443337

ABSTRACT

Real-time process metrics are standard for the majority of fermentation-based industries but have not been widely adopted by the wine industry. In this study, replicate fermentations were conducted with temperature as the main process parameter and assessed via in-line Oxidation Reduction Potential (ORP) probes and at-line profiling of phenolics compounds by UV-Vis spectroscopy. The California and Oregon vineyards used in this study displayed consistent vinification outcomes over five vintages and are representative of sites producing faster- and slower-fermenting musts. The selected sites have been previously characterized by fermentation kinetics, elemental profile, phenolics, and sensory analysis. ORP probes were integrated into individual fermentors to record how ORP changed throughout the fermentation process. The ORP profiles generally followed expected trends with deviations revealing previously undetectable process differences between sites and replicates. Site-specific differences were also observed in phenolic and anthocyanin extraction. Elemental composition was also analyzed for each vineyard, revealing distinctive profiles that correlated with the fermentation kinetics and may influence the redox status of these wines. The rapid ORP responses observed related to winemaking decisions and yeast activity suggest ORP is a useful process parameter that should be tracked in addition to Brix, temperature, and phenolics extraction for monitoring fermentations.


Subject(s)
Fermentation , Spectrophotometry, Ultraviolet , Wine/microbiology , Oxidation-Reduction , Vitis/chemistry , Vitis/microbiology , Wine/analysis
2.
mSystems ; 6(2)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33850038

ABSTRACT

Ribosomal DNA amplicon sequencing of grape musts has demonstrated that microorganisms occur nonrandomly and are associated with the vineyard of origin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine fermentation outcomes. Here, ribosomal DNA amplicon sequencing from grape musts and RNA sequencing of eukaryotic transcripts from primary fermentations inoculated with the wine yeast Saccharomyces cerevisiae RC212 were used to profile fermentations from 15 vineyards in California and Oregon across two vintages. These data demonstrate that the relative abundance of fungal organisms detected by ribosomal DNA amplicon sequencing correlated with neither transcript abundance from those same organisms within the RNA sequencing data nor gene expression of the inoculated RC212 yeast strain. These data suggest that the majority of the fungi detected in must by ribosomal DNA amplicon sequencing were not active during the primary stage of these inoculated fermentations and were not a major factor in determining RC212 gene expression. However, unique genetic signatures were detected within the ribosomal DNA amplicon and eukaryotic transcriptomic sequencing that were predictive of vineyard site and region. These signatures included S. cerevisiae gene expression patterns linked to nitrogen, sulfur, and thiamine metabolism. These genetic signatures of site offer insight into specific environmental factors to consider with respect to fermentation outcomes and vineyard site and regional wine characteristics.IMPORTANCE The wine industry generates billions of dollars of revenue annually, and economic productivity is in part associated with regional distinctiveness of wine sensory attributes. Microorganisms associated with grapes and wineries are influenced by region of origin, and given that some microorganisms play a role in fermentation, it is thought that microbes may contribute to the regional distinctiveness of wine. In this work, as in previous studies, it is demonstrated that specific bacteria and fungi are associated with individual wine regions and vineyard sites. However, this work further shows that their presence is not associated with detectable fungal gene expression during the primary fermentation or the expression of specific genes by the inoculate Saccharomyces cerevisiae strain RC212. The detected RC212 gene expression signatures associated with region and vineyard site also allowed the identification of flavor-associated metabolic processes and environmental factors that could impact primary fermentation outcomes. These data offer novel insights into the complexities and subtleties of vineyard-specific inoculated wine fermentation and starting points for future investigations into factors that contribute to regional wine distinctiveness.

3.
Appl Environ Microbiol ; 87(11)2021 05 11.
Article in English | MEDLINE | ID: mdl-33741633

ABSTRACT

Saccharomyces cerevisiae metabolism produces ethanol and other compounds during the fermentation of grape must into wine. Thousands of genes change expression over the course of a wine fermentation, allowing S. cerevisiae to adapt to and dominate the fermentation environment. Investigations into these gene expression patterns previously revealed genes that underlie cellular adaptation to the grape must and wine environments, involving metabolic specialization and ethanol tolerance. However, the majority of studies detailing gene expression patterns have occurred in controlled environments that may not recapitulate the biological and chemical complexity of fermentations performed at production scale. Here, an analysis of the S. cerevisiae RC212 gene expression program is presented, drawing from 40 pilot-scale fermentations (150 liters) using Pinot noir grapes from 10 California vineyards across two vintages. A core gene expression program was observed across all fermentations irrespective of vintage, similar to that of laboratory fermentations, in addition to novel gene expression patterns likely related to the presence of non-Saccharomyces microorganisms and oxygen availability during fermentation. These gene expression patterns, both common and diverse, provide insight into Saccharomyces cerevisiae biology critical to fermentation outcomes under industry-relevant conditions.IMPORTANCE This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using industry-relevant conditions. The reported gene expression patterns of RC212 are generally similar to those observed under laboratory fermentation conditions but also contain gene expression signatures related to yeast-environment interactions found in a production setting (e.g., the presence of non-Saccharomyces microorganisms). Key genes and pathways highlighted by this work remain undercharacterized, indicating the need for further research to understand the roles of these genes and their impact on industrial wine fermentation outcomes.


Subject(s)
Gene Expression , Genes, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Wine/microbiology , Fermentation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL