Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Curr Oncol ; 30(9): 7950-7963, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37754493

ABSTRACT

BACKGROUND: We evaluated the phenotype of sporadic gastric cancer based on HP status and binding of a tumor risk marker monoclonal, Adnab-9. METHODS: We compared a familial GC kindred with an extremely aggressive phenotype to HP-positive (HP+) and -negative (HP-) sporadic gastric adenocarcinoma (GC) patients in the same community to determine if similar phenotypes exist. This might facilitate gene discovery to understand the pathogenesis of aggressive GC phenotypes, particularly with publications implicating immune-related gene-based signatures, and the development of techniques to gauge the stance of the innate immune system (InImS), such as the FERAD ratio (blood ferritin:fecal Adnab-9 binding OD-background binding). Resection specimens for the sporadic and familial group were stained for HP and examined for intestinal metaplasia (IM) and immunostaining for Adnab-9. Familial kindred specimens were also tested for the E-cadherin mutation and APC (adenomatous polyposis coli). Survival was evaluated. RESULTS: Of 40 GC patients, 25% were HP+ with a greater proportion of intestinal metaplasia (IM) and gastric atrophy than the HP- group. The proband of the familial GC kindred, a 32-year-old mother with fatal GC, was survived by 13-year-old identical twins. Twin #1 was HP- with IM and Twin #2 was HP+. Both twins subsequently died of GC within two years. The twins did not have APC or E-cadherin mutations. The mean overall survival in the HP+ sporadic GC group was 2.47 ± 2.58 years and was 0.57 ± 0.60 years in the HP- group (p = 0.01). Survival in the kindred was 0.22 ± 0.24 years. Adnab-9 labeling was positive in fixed tissues of 50% of non-familial GC patients and in gastric tissue extract from Twin #2. The FERAD ratio was determined separately in six prospectively followed patient groups (n = 458) and was significantly lower in the gastric cancer patients (n = 10) and patients with stomach conditions predisposing them to GC (n = 214), compared to controls (n = 234 patients at increased risk for colorectal cancer but without cancer), suggesting a failure of the InImS. CONCLUSION: The HP+ sporadic GC group appears to proceed through a sequence of HP infection, IM and atrophy before cancer supervenes, and the HP- phenotype appear to omit this sequence. The familial cases may represent a subset with both features, but the natural history strongly resembles that of the HP- group. Two different paths of carcinogenesis may exist locally for sporadic GC. The InImS may also be implicated in prognosis. Identifying these patients will allow for treatment stratification and early diagnosis to improve GC survival.


Subject(s)
Adenocarcinoma , Helicobacter pylori , Stomach Neoplasms , Humans , Adult , Adolescent , Stomach Neoplasms/genetics , Adenocarcinoma/genetics , Carcinogenesis , Atrophy , Cadherins
2.
Ann Biomed Eng ; 51(11): 2566-2578, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37442922

ABSTRACT

The interaction of the three-point seat belt with the occupant, particularly the lap belt with the pelvis, is affected by a multitude of intrinsic and extrinsic factors, including the torso recline angle, lap belt angle, and occupant body mass index (BMI). While field data analyses have shown the strong safety benefit for seat belt use regardless of occupant size or crash direction, the term "submarining" historically has been used to describe a scenario in which the lap belt loads the abdominal soft tissue and organs, superior and posterior to the pelvic bone. While contemporary restraint systems work to effectively address the risk of submarining in occupants properly seated and properly belted, scenarios in which the lap belt may not properly engage the load-bearing pelvis remain. These scenarios, including a reclined torso angle or shallow lap belt angle, require further study. In this research study, eight non-injurious seated belt pull tests were conducted on two constrained whole-body cadavers of above-normal BMI (≥ 25 kg/m2) with controlled variation of torso and lap belt-pelvis angles. Test factors affecting belt engagement with the pelvis were identified for each subject. Belt engagement was largely affected by the initial placement of the lap belt. The initial belt placement was affected by the torso angle which influenced the distribution of the abdominal soft tissue. The belt disengagement thresholds differed between subjects due to the inter-subject differences in soft tissue distribution, which affected the lap belt kinematics relative to the pelvis. In addition to improving the understanding of this particular submarining mechanism, this study provides a dataset for future validation of human body model soft tissue deformation response from lap belt loading.

3.
Traffic Inj Prev ; 24(sup1): S55-S61, 2023.
Article in English | MEDLINE | ID: mdl-37267016

ABSTRACT

OBJECTIVE: The goal of this study was to evaluate the effect of axial compression, employed with a follower-load mechanism, on the response of the lumbar spine in flexion and extension bending. Additional goals include measurement of both the kinetic (stiffness) and kinematic (deformation distribution) responses, evaluating how the responses vary across specimens, and to develop response corridors that can be used to evaluate human body models (HBMs) and anthropomorphic test devices (ATDs). METHODS: Seven mid-sized male adult lumbar spines (T12-S1) from postmortem human surrogates were tested in subinjurious flexion and extension bending with 0, 900, and 1800 N of superimposed axial compression. Tests were performed in load-control with a 6-DOF robotic test system that applied pure flexion and extension moments to the specimens, and axial compression was directed along the spine's curvature via a follower load mechanism powered by force-controlled linear actuators. Load-deformation response data were captured and used to characterize the kinetic response of the lumbar spine in flexion/extension, and how it varies with axial compression. Individual vertebral kinematics were captured using 3D motion capture and the data was used to illustrate the distribution of bending deformation across each intervertebral joint of the spine, as well has how that distribution changes with axial compression. These response data were used to develop elliptical path-length parameterized response corridors for surrogate biofidelity evaluation. RESULTS: The lumbar spine was found to be generally stiffer in extension than in flexion, but this difference decreased with increasing axial compression. The lumbar spine exhibited a nonlinear kinetic (moment vs. angle) response in flexion that became more linear and stiffer with the addition of axial compression. In flexion without axial load, the majority of the bending deformation occurred at the L5-S1 joint, whereas in extension, deformation was more evenly distributed across the different intervertebral levels, but the locus of deformation was located in the mid-proximal lumbar at L2-L3. CONCLUSIONS: The superposition of axial compression in the lumbar spine affects the kinetic and kinematic response of the lumbar spine in flexion and extension. The response data and approach detailed in this study permit better assessment of ATD and HBM biofidelity.


Subject(s)
Accidents, Traffic , Lumbar Vertebrae , Adult , Humans , Male , Lumbar Vertebrae/physiology , Range of Motion, Articular/physiology , Biomechanical Phenomena/physiology , Autopsy
4.
Ann Biomed Eng ; 51(6): 1216-1225, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36681746

ABSTRACT

Anticipating changes to vehicle interiors with future automated driving systems, the automobile industry recently has focused attention on crash response in novel postures with increased seatback recline. Prior research found that this posture may result in greater risk of lumbar spine injury in the event of a frontal crash. This study developed a lumbar spine injury risk function (IRF) that estimated injury risk as a function of simultaneously applied compression force and flexion moment. Force and moment failure data from 40 compression-flexion tests were utilized in a Weibull survival model, including appropriate data censoring. A mechanics-based injury metric was formulated, where lumbar spine compression force and flexion moment were normalized by specimen geometry. Subject age was incorporated as a covariate to further improve model fit. A weighting factor was included to adjust the influence of force and moment, and parameter optimization yielded a value of 0.11. Thus, the normalized compression force component had a greater effect on injury risk than the normalized flexion moment component. Additionally, as force was nominally increased, less moment was required to produce injury for a given age and specimen geometry. The resulting IRF may be utilized to improve occupant safety in the future.


Subject(s)
Accidents, Traffic , Spinal Injuries , Humans , Automobiles , Lumbar Vertebrae/physiology , Biomechanical Phenomena
5.
Traffic Inj Prev ; 23(sup1): S20-S25, 2022.
Article in English | MEDLINE | ID: mdl-35704679

ABSTRACT

OBJECTIVE: The objective of the current study was to increase scientific understanding of rear-seat passenger seating position, postures, CRS use, and belt use through a naturalistic study. A secondary objective was to compare data from vehicles used in ride-hailing with data from other vehicles. METHOD: Video cameras were installed in the passenger cabins of the vehicles of 75 drivers near the center of the windshield. The video data were downloaded after the vehicles were operated by their owners for two weeks. Video frames were sampled from near the ends and in the middle of each trip, and at five-minute intervals in trips longer than 15 min. A total of 7,323 frames with second-row passengers were manually coded. RESULTS: A total of 444 unique second-row passengers were identified in video frames from 1,188 trips taken in 65 of the 75 vehicles in the study. Two of the vehicles that were driven for commercial ride-hailing during the study period accounted for 199 (45%) of the passengers. Considering multiple passengers in some trips, a total of 1,899 passenger-trips were identified. For passengers not using child restraint systems (CRS), the belt use rate was 65% in the non-ride-hailing vehicles versus 32% among passengers in the ride-hailing vehicles. No CRS use was observed in the ride-hailing vehicles. Among children using backless boosters, the shoulder belt was lateral to the clavicle or under the arm in 26% of frames. Among belted passengers not using CRS, the belt was lateral to the clavicle or on the neck about 6% of the time. Belted passengers not using CRS were observed leaning to the left or right about 27% of the time, with leaning away from the shoulder belt more common than leaning into the belt. CONCLUSIONS: This study is the first to report seating position, posture, and belt fit observations for a large naturalistic sample of second-row passengers that includes adult occupants. The data suggest that low rear seat belt use rates remain a concern, particularly in ride-hailing vehicles. Non-nominal belt placement and posture may also be common in second-row seating positions.


Subject(s)
Accidents, Traffic , Child Restraint Systems , Child , Adult , Humans , Seat Belts , Posture
6.
J Biomech ; 135: 111051, 2022 04.
Article in English | MEDLINE | ID: mdl-35325753

ABSTRACT

Vehicle safety systems have substantially decreased motor vehicle crash-related injuries and fatalities, but injuries to the lumbar spine still have been reported. Experimental and computational analyses of upright and, particularly, reclined occupants in frontal crashes have shown that the lumbar spine can be subjected to simultaneous and out-of-phase combined axial compression and flexion loading. Lumbar spine failure tolerance in combined compression-flexion has not been widely explored in the literature. Therefore, the goal of this study was to measure the failure tolerance of the lumbar spine in combined compression and flexion. Forty lumbar spine segments with three vertebrae (one unconstrained) and two intervertebral discs (both unconstrained) were pre-loaded with axial compression (2200N, 3300N, or 4500N) and then subjected to rotation-controlled dynamic flexion bending until failure. Clinically relevant middle vertebra fractures were observed in twenty-one of the specimens, including compression and burst fractures. The remaining nineteen specimens experienced failure at the potting-grip interface. Failure tolerance varied within the sample and were categorized by the appropriate data censoring, with clinically relevant middle vertebrae fractures characterized as uncensored or left-censored and potting-grip fractures characterized as right-censored. Average failure force and moment were 3290N (range: 1580N to 5042N) and 51Nm (range: 0Nm to 156 Nm) for uncensored data, 3686N (range: 3145N to 4112N) and 0Nm for left-censored data, and 3470N (range: 2138N to 5062N) and 101Nm (range: 27Nm to 182Nm) for right-censored data. These data can be used to develop and improve injury prediction tools for lumbar spine fractures and further research in future safety systems.


Subject(s)
Lumbar Vertebrae , Spinal Fractures , Accidents, Traffic , Biomechanical Phenomena , Humans , Range of Motion, Articular
7.
J Biomech Eng ; 144(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-34590691

ABSTRACT

The characterization of human subcutaneous adipose tissue (SAT) under high-rate loading is valuable for development of biofidelic finite element human body models (FE-HBMs) to predict seat belt-pelvis interaction and injury risk in vehicle crash simulations. While material characterization of SAT has been performed at 25 °C or 37 °C, the effect of temperature on mechanical properties of SAT under high-rate and large-deformation loading has not been investigated. Similarly, while freezing is the most common preservation technique for cadaveric specimens, the effect of freeze-thaw on the mechanical properties of SAT is also absent from the literature. Therefore, the aim of this study was to determine the effect of freezing and temperature on mechanical properties of human SAT. Fresh and previously frozen human SAT specimens were obtained and tested at 25 °C and 37 °C. High-rate indentation and puncture tests were performed, and indentation-puncture force-depth responses were obtained. While the chance of material failure was found to be different between temperatures and between fresh and previously frozen tissue, statistical analyses revealed that temperature and freezing did not change the shear modulus and failure characteristics of SAT. Therefore, the results of the current study indicated that SAT material properties characterized from either fresh or frozen tissue at either 25 °C or 37 °C could be used for enhancing the biofidelity of FE-HBMs.


Subject(s)
Adipose Tissue , Punctures , Biomechanical Phenomena , Freezing , Humans , Temperature
8.
Traffic Inj Prev ; 22(sup1): S116-S121, 2021.
Article in English | MEDLINE | ID: mdl-34605723

ABSTRACT

OBJECTIVE: Identifying current occupant travel patterns can inform decision making regarding the design, regulation, and occupant protection systems helpful for automated vehicle systems and mobility services. METHODS: Two travel data sets were analyzed to quantify travel patterns: the 2017 National Household Travel Survey (NHTS), which provides data on household trips logged for a 24-h period, and the 2011-2015 National Automotive Sampling System-General Estimates System (NASS-GES), which contains data sampled from police-reported crashes. Analysis identified trends with driver age and gender, occupant age and gender, time of day, day of week, trip purpose, trip duration, vehicle type, as well as occupant role as solo driver, driver of others, single passenger, or multiple passengers. RESULTS: In NHTS, the median trip duration is 15 min; only 10% of trips last longer than 40 min. Trip duration does not vary with occupant role or vehicle type. Variations with trip time of day and day of week show a unimodal pattern for weekends, as well as weekday trips for those aged 55 years and older and non-solo occupants aged 18 to 29 years. Other occupant groups have a bimodal weekday travel pattern with peak trips corresponding to morning and evening rush hours.In GES, approximately half of occupants are solo drivers. Female drivers aged 55 and older travel alone 60% of the time, and drivers under age 18 and female drivers aged 30 to 54 drive alone on less than 45% of trips. Approximately 13% of occupants are single passengers, and 16% travel with a driver and at least 1 other passenger. About 16% of occupants are front seat passengers. CONCLUSIONS: This analysis of vehicle occupancy provides insights on what ridership of future automated vehicles and expanded ride-hailing services may look like. Because half of occupants are solo drivers, only 16% are multiple passengers, and median trip length is just 15 min, proposed alternative seating arrangements intended to promote comfort and passenger interaction may not represent the typical future vehicle use case in the United States. Knowledge of current occupancy patterns can help automated vehicle designers and regulators develop safe seating scenarios that meet customer needs.


Subject(s)
Accidents, Traffic , Autonomous Vehicles , Adolescent , Adult , Female , Humans , Middle Aged , Police , Travel , United States , Young Adult
9.
Acta Biomater ; 129: 188-198, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34048975

ABSTRACT

The mechanical behavior of subcutaneous adipose tissue (SAT) affects the interaction between vehicle occupants and restraint systems in motor vehicle crashes (MVCs). To enhance future restraints, injury countermeasures, and other vehicle safety systems, computational simulations are often used to augment experiments because of their relative efficiency for parametric analysis. How well finite element human body models (FE-HBMs), which are often used in such simulations, predict human response has been limited by the absence of material models for human SAT that are applicable to the MVC environment. In this study, for the first time, dynamic multidirectional unconfined compression and simple shear loading tests were performed on human abdominal SAT specimens under conditions similar to MVCs. We also performed multiple ramp-hold tests to evaluate the quasilinear viscoelasticity (QLV) assumption and capture the stress relaxation behavior under both compression and shear. Our mechanical characterization was supplemented with scanning electron microscopy (SEM) performed in different orientations to investigate whether the macrostructural response can be related to the underlying microstructure. While the overall structure was shown to be visually different in different anatomical planes, a preferred orientation of any fibrous structures could not be identified. We showed that the nonlinear, viscoelastic, and direction-dependent responses under compression and shear tests could be captured by incorporating QLV in an Ogden-type hyperelastic model. Our comprehensive approach will lead to more accurate computational simulations and support the collective effort on the research of future occupant protection systems. STATEMENT OF SIGNIFICANCE: There is an urgent need to characterize the mechanical behavior of human adipose tissue under multiple dynamic loading conditions, and to identify constitutive models that are able to capture the tissue response under these conditions. We performed the first series of experiments on human adipose tissue specimens to characterize the multi-directional compression and shear behavior at impact loading rates and obtained scanning electron microscope images to investigate whether the macrostructural response can be related to the underlying microstructure. The results showed that human adipose tissue is nonlinear, viscoelastic and direction dependent, and its mechanical response under compression and shear tests at different loading rates can be captured by incorporating quasi-linear viscoelasticity in an Ogden-type hyperelastic model.


Subject(s)
Adipose Tissue , Models, Biological , Elasticity , Finite Element Analysis , Humans , Pressure , Stress, Mechanical , Viscosity
10.
J Mech Behav Biomed Mater ; 113: 104112, 2021 01.
Article in English | MEDLINE | ID: mdl-33010697

ABSTRACT

Understanding the mechanical properties of human adipose tissue, and its influence on seat belt-pelvis interaction is beneficial for computational human body models that are developed for injury prediction in the vehicle crashworthiness simulations. While various studies have characterized adipose tissue, most of the studies used porcine adipose tissue as a surrogate, and none of the studies were performed at loading rates relevant for motor vehicle collisions. In this work, the mechanical response of human and porcine adipose tissue was studied. Two dynamic loading modes (compression and simple shear) were tested in adipose tissue extracted from the human abdomen and porcine back. An Ogden hyperelastic model was used to fit the loading response, and specific material parameters were obtained for each specimen. Two-sample t-tests were performed to compare the effective shear moduli and peak stresses from porcine and human samples. The material response of the human adipose tissue was consistent with previous studies. Porcine adipose tissue was found to be significantly stiffer than human adipose tissue under compression and shear loading. Also, when material model parameters were fit to only one loading mode, the predicted response in the other mode showed a poor fit.


Subject(s)
Adipose Tissue , Animals , Elasticity , Humans , Pilot Projects , Pressure , Stress, Mechanical , Swine
11.
Traffic Inj Prev ; 21(sup1): S171-S173, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33155861

ABSTRACT

OBJECTIVE: The objective of this study was to investigate the use of public video from internet user-generated content as a means of collecting naturalistic driving data. METHODS: A convenience sample of 38 videos comprised of 203 events was extracted from publicly available channels on the YouTube™ platform. Each event was manually reviewed and pseudo-coded according to a subset of current CRSS variables. Pre-crash scenarios were coded using categories developed for prior NHTSA analysis. RESULTS: Crashes represented 67% of the reviewed cases. Collisions with motor vehicles accounted for 84% of all crashes in the sample. Pre-crash scenarios were able to be determined for all crashes and near-crashes. The most prevalent pre-crash scenario types in the video data were Crossing Paths (41%), Rear End (21%), and Lane Change (17%). The top pre-crash scenarios from Swanson et al., were Rear End (31%), Crossing Paths (21%), and Lane Change (12%). The most prevalent pre-near crash scenario types in the video data were Crossing Paths (32%), Lane Change (30%), and Pedestrian (12%). CONCLUSIONS: The most prevalent pre-crash scenarios in the video data were similar to those in data from FARS and NASS-GES. Though not nationally representative, this preliminary study demonstrated that user-generated content may be useful as a source of inexpensive naturalistic data and provides sufficient detail to capture important pre-crash, near-crash and crash information.


Subject(s)
Accidents, Traffic/statistics & numerical data , Automobile Driving/statistics & numerical data , Data Collection/methods , Videotape Recording , Humans
12.
Traffic Inj Prev ; 21(sup1): S7-S12, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32692249

ABSTRACT

OBJECTIVE: Recent studies have suggested that a relationship exists between crash injury risk and occupant posture, particularly in postures different from those used with anthropomorphic test devices (ATDs) in crash testing. The objective of this study was to increase scientific understanding of typical front-seat passenger postures through a naturalistic study. METHOD: Video cameras were installed in the passenger cabins of the vehicles of 75 drivers. Reflective targets were attached to the seats and the seat position and seat back angle was moved through their available ranges during instrumentation. The video data, along with vehicle acceleration and location data, were downloaded after the vehicles were operated as usual by their owners for two weeks. Video frames were manually coded to identify characteristics of front-seat passenger posture and position. Seat position and seat back angle were estimated using the calibration data obtained during vehicle instrumentation. RESULTS: Video frames from a total of 2733 trips were coded for 306 unique front-seat passengers. For these trips, a total of 13638 frames were coded; each frame represents about four minutes of travel time. The head was rotated left or right in 33% of frames, and the torso was rotated left or right about 10% of the time and pitched forward in almost 10% of frames. No seat position or seat back angle change was noted in 40 (53%) of vehicles and the distributions of seat position and seat back angle on arrival were essentially unchanged during travel. The seat was positioned full-rear on the seat track about 23% of the time and rearward of the mid-track position in 92% of frames. The mean seat back angle was 25.4 degrees (standard deviation 6.4 degrees); seat back angle was greater than 30 degrees in 15% of frames and greater than 35 degrees in less than 1% of frames. CONCLUSIONS: This study is the first to report distributions of postures, seat positions, and seat back angles for front-seat passengers. Seat positions rearward of the middle of the seat adjustment range are common, but highly reclined postures are infrequent. Non-nominal torso and head postures also are nontrivial.


Subject(s)
Automobile Driving/statistics & numerical data , Posture , Sitting Position , Head/physiology , Humans , Prevalence , Rotation , Torso/physiology , Videotape Recording
13.
Article in English | MEDLINE | ID: mdl-32178285

ABSTRACT

BACKGROUND: With active safety and automated vehicle features becoming more available, unanticipated pre-crash vehicle maneuvers, such as evasive swerving, may become more common, and they may influence the resulting effectiveness of occupant restraints, and consequently may affect injury risks associated with crashes. Therefore, the objective of this study was to quantify the influence of age on key occupant kinematic, kinetic, and muscular responses during evasive swerving in on-road testing. METHODS: Seat belt-restrained children (10-12 years old), teens (13-17 years old), and adults (21-33 years old) experienced two evasive swerving maneuvers in a recent model sedan on a test track. Kinematics, muscle activity, and seat belt load distribution were determined and analyzed. RESULTS: Compared to teens and adults, children showed greater head and trunk motion (p < 0.03), but similar muscle activation in the into-the-belt direction of swerving. In the out-of-the-belt direction, children showed head and trunk motion more similar to teens and adults (p < 0.02), but with greater muscle activation. CONCLUSIONS: Children showed different neuromuscular control of head and trunk motion compared to older occupants. This study highlights differences in the relationship between kinematics and muscle activation across age groups, and provides new validation data for active human body models across the age range.


Subject(s)
Accidents, Traffic , Motion , Seat Belts , Adolescent , Adult , Age Factors , Biomechanical Phenomena , Child , Head , Humans , Muscles , Young Adult
14.
Traffic Inj Prev ; 21(1): 98-101, 2020.
Article in English | MEDLINE | ID: mdl-31999486

ABSTRACT

Objective: The Hybrid-III anthropometric test devices (ATDs) are widely used by the automotive industry to evaluate restraint system performance in standardized vehicle crash tests. The relationship between the belt fit measured for people in driving posture and the belt fit obtained with ATDs has not been reported in the literature. The present study compares lap and shoulder belt fit data from ATDs and to a statistical estimate for drivers using age, stature, and BMI.Methods: The lap and shoulder belt fits were measured for small-female and midsize-male Hybrid-III ATDs in a laboratory mockup of a midsize sedan. A range of lower and upper belt anchorage locations were used. The ATD belt fit data were compared with predictions from a regression model developed by data from 97 men and women measured in the same driving package conditions. Humans were free to position the belt comfortably, even if the position was not optimal.Results: The measurements of the ATD belt fit were obtained and compared to the regression estimate for a driver using age, stature, and BMI as predictors. For the small female, the ATD's lap belt was placed 46 mm further forward and 12 mm lower relative to the pelvis than the regression model estimates for a driver's lap belt placement. For the midsize male, the lap portion of the belt was placed 13 mm more rearward and 33 mm lower on the physical ATD than the regression model estimates for a similarly sized driver. The shoulder belt was placed an average of 66 mm more inboard and 11 mm more outboard on the small-female and midsize-male physical ATDs, respectively, compared with regression model estimates for drivers.Conclusions: Differences in the lap and shoulder belt fits were quantified between the physical ATDs and regression predictions for similarly sized humans in driving postures. The consequences of these differences should be investigated to help increase understanding of the relationship between belt fit and belt performance.


Subject(s)
Automobile Driving , Posture , Seat Belts/statistics & numerical data , Equipment Design , Female , Humans , Male , Manikins
15.
Traffic Inj Prev ; 20(sup2): S75-S80, 2019.
Article in English | MEDLINE | ID: mdl-31385726

ABSTRACT

Objective: Precrash occupant motion may affect head and trunk position and restraint performance in a subsequent crash, particularly for young children. Others have studied seat belt-restrained adult drivers and adult and adolescent passengers in precrash maneuvers. For younger children, optimal restraint includes a belt-positioning booster seat, which in precrash maneuvers may contribute in unique ways to the overall body motion. Therefore, the objective of this study was to quantify booster-seated child occupant kinematic, kinetic, and muscle responses during precrash maneuvers and characterize booster movement with respect to the overall occupant kinematics.Methods: Vehicle maneuver tests were conducted with a recent model year sedan at the Transportation Research Center Inc. (TRC, Marysville, Ohio). Three precrash vehicle maneuvers were simulated: Automated and manual emergency braking (AEB and MEB) and oscillatory swerving or slalom (SLA). Each maneuver was repeated twice for each participant. Seven 6- to 8-year-old booster-seated children participated in the study and all subjects were seated in the right rear seat. Vehicle dynamics (i.e., motion, position, and orientation) were measured with an inertial and Global Positioning System navigation system (Oxford RT 3003). Kinematic data from human volunteers were collected with an 8-camera 3D motion capture system (Optitrack Prime 13 200 Hz, NaturalPoint, Inc.). Photoreflective markers were placed on participants' head and trunk. Electromyography (EMG; Trigno EMG Wireless Delsys, Inc., 2,000 Hz) sensors were placed on bilateral muscles predicted to be most likely involved in bracing behaviors.Results: Children demonstrated greater head and trunk velocity in MEB (head 123.7 ± 13.1 cm/s, trunk 77.6 ± 14.1 cm/s) compared to AEB (head 45.31 ± 11.5 cm/s, trunk 27.1 ± 5.5 cm/s; P < .001). Participants also showed greater head motion in MEB (18.9 ± 1.4 cm) vs. AEB (15.1 ± 4.8 cm) but the differences were not statistically significant (P < .1). Overall, the booster seats themselves did not move substantially (<3 cm) in the braking maneuvers. During the SLA, however, the booster seat moved laterally up to 5 cm in several subjects, contributing substantially to peak trunk (6.5-14.0 cm) and head (9.9-21.4 cm) excursion during the maneuver. Booster-seated children also exhibited a greater activation of biceps and deltoid muscles and abdominal and middle trapezii muscles than the sternocleidomastoids during these maneuvers.Conclusions: The quantification of booster seat motion and neuromuscular control and the relationship between kinematics and muscle activation in booster-seated children in precrash maneuvers provides important data on the transition between the precrash and crash phases for this young age group and may help identify opportunities for interventions that integrate active and passive safety.


Subject(s)
Accidents, Traffic , Child Restraint Systems , Movement/physiology , Automobile Driving , Biomechanical Phenomena/physiology , Body Height/physiology , Body Weight/physiology , Child , Electromyography , Geographic Information Systems , Head Movements/physiology , Humans , Male , Muscle, Skeletal/physiology , Ohio , Restraint, Physical , Torso/physiology
16.
Traffic Inj Prev ; 20(sup1): S106-S111, 2019.
Article in English | MEDLINE | ID: mdl-31381438

ABSTRACT

Objective: Emergency braking can potentially generate precrash occupant motion that may influence the effectiveness of restraints in the subsequent crash, particularly for rear-seated occupants who may be less aware of the impending crash. With the advent of automated emergency braking (AEB), the mechanism by which braking is achieved is changing, potentially altering precrash occupant motion. Further, due to anatomical and biomechanical differences across ages, kinematic differences between AEB and manual emergency braking (MEB) may vary between child and adult occupants. Therefore, the objective of this study was to quantify differences in rear-seated adult and pediatric kinematics and muscle activity during AEB and MEB scenarios. Methods: Vehicle maneuvers were performed in a recent model year sedan traveling at 50 km/h. MEB (acceleration ∼1 g) was achieved by the driver pressing the brake pedal with maximum effort. AEB (acceleration ∼0.8 g) was triggered by the vehicle system. Inertial and Global Positioning System data were collected. Seventeen male participants aged 10-33 were restrained in the rear right passenger seat and experienced each maneuver twice. The subjects' kinematics were recorded with an 8-camera 3D motion capture system. Electromyography (EMG) recorded muscle activity. Head and trunk displacements, raw and normalized by seated height, and peak head and trunk velocity were compared across age and between maneuvers. Mean EMG was calculated to interpret kinematic findings. Results: Head and trunk displacement and peak velocity were greater in MEB than in AEB in both raw and normalized data (P ≤ .01). No effect of age was observed (P ≥ .21). Peak head and trunk velocities were greater in repetition 1 than in repetition 2 (P ≤ .006) in MEB but not in AEB. Sternocleidomastoid (SCM) mean EMG was greater in MEB compared to AEB, and muscle activity increased in repetition 2 in MEB. Conclusions: Across all ages, head and trunk excursions were greater in MEB than AEB, despite increased muscle activity in MEB. This observation may suggest an ineffective attempt to brace the head or a startle reflex. The increased excursion in MEB compared to AEB may be attributed to differences in the acceleration pulses between the 2 scenarios. These results suggest that AEB systems can use specific deceleration profiles that have potential to reduce occupant motion across diverse age groups compared to sudden maximum emergency braking applied manually.


Subject(s)
Accidents, Traffic/statistics & numerical data , Deceleration , Head/physiology , Protective Devices/statistics & numerical data , Torso/physiology , Accidents, Traffic/prevention & control , Adolescent , Adult , Automation/statistics & numerical data , Biomechanical Phenomena , Child , Emergencies , Humans , Male , Young Adult
17.
Traffic Inj Prev ; 19(8): 825-831, 2018.
Article in English | MEDLINE | ID: mdl-30570334

ABSTRACT

OBJECTIVE: U.S. FMVSS 202a requires that a vehicle head restraint lie within a specified distance (55 mm) from the physical headform on the head restraint measurement device (HRMD). Smaller values of this distance, known as backset, are frequently associated with improved protection against neck injury in rear impact. In some vehicles, small backsets are also associated with complaints of head restraint interference with drivers' preferred head positions. The objective of this study is to examine head/head restraint distances using data from a lab study of driving posture to provide guidance for safe and comfortable head restraint design. METHODS: Head positions were measured for 88 U.S. drivers in a laboratory mockup using a seat from a mid-size sedan. The head restraint was removed to allow measurement of drivers' preferred head locations without interference from the head restraint. Rates of disaccommodation, defined as interference between predicted possible head restraint locations and drivers' preferred head locations, were analyzed at HRMD-referenced backsets of 25, 50, 75, and 100 mm measured at 22° and 25° seat back angles. RESULTS: With HRMD-referenced backsets of 25 mm and 50 mm measured at 25°, the head restraint intersected the preferred head locations of 17.9 and 5.2% of the drivers, respectively. An HRMD-referenced backset measured at 22° produced larger accommodation rates than the same backset measured at 25°. CONCLUSIONS: The reported distribution of occupant head positions and the resulting restrictions on comfortable head restraint position at various HRMD-referenced backsets and seat back angles help provide guidance for head restraint design. Knowing the actual mean driver-selected seat back angle for a particular vehicle seat and the model presented in this work, a manufacturer can choose a head restraint location that will have a high likelihood of complying with FMVSS backset requirements while also achieving minimal disaccommodation. The findings in this study support the flexibility in the current FMVSS 202a that permits testing at more upright seat back angles than the 25° originally proposed.


Subject(s)
Automobile Driving/statistics & numerical data , Head Protective Devices/statistics & numerical data , Posture , Restraint, Physical/statistics & numerical data , Accidents, Traffic/prevention & control , Adult , Aged , Aged, 80 and over , Female , Head/physiology , Humans , Male , Middle Aged , Young Adult
18.
Traffic Inj Prev ; 19(sup2): S70-S77, 2018.
Article in English | MEDLINE | ID: mdl-30543309

ABSTRACT

OBJECTIVE: A test track study was conducted to quantify patterns of adult front seat passenger head motion during abrupt vehicle maneuvers. METHOD: Eighty-seven men and women with a wide range of body sizes and ages participated in data collection on a closed test track in a passenger sedan under manual control by a test driver. Because a primary goal of the study was to gather "unaware" data, the participants were instructed that the study was concerned with vehicle dynamics and they were required to read from a questionnaire taped to the top of their thighs as the drive began. The first event was a hard brake (approximately 1 g) to a stop from 35 mph (56 kph). Within the space of approximately 5 min the participants also experienced an aggressive lane change, a sharp right turn with simultaneous hard braking, and a second hard braking event. A Microsoft Kinect v2 sensor was positioned to view the area around the front passenger seat. Head location was tracked using the Kinect data with a novel methodology that fit 3D head scan data to the depth data acquired in the vehicle. RESULT: The mean (standard deviation) forward excursion of the estimated head center of gravity (CG) location in the first braking event was 135 (62) mm. The forward head CG excursion in the second braking event of 115 (51) mm was significantly less than that in the first, but the difference was small relative to the within-condition variance. Head excursion on the second braking trial was less than that on the first trial for 69% of participants. The mean maximum inboard head excursion in lane-change maneuvers was 118 (40) mm. Forward head excursions in braking were significantly smaller for older passengers and those with higher body mass index, but the combined factors accounted for less than 25% of the variance. Inboard head excursion in the lane-change event was significantly related to stature, but only about 7% of variance was related to body size. Head excursions for men and women did not differ significantly after accounting for body size. DISCUSSION: This is the first quantitative occupant dynamics study to use a large, diverse sample of passengers, enabling the exploration of the effects of covariates such as age and body size. CONCLUSIONS: The data demonstrate that a relatively large range of head positions can be expected to result from abrupt vehicle maneuvers. The data do not support simple scaling of excursions based on body size.


Subject(s)
Accidents, Traffic , Head , Movement , Adult , Aged , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Young Adult
19.
J Safety Res ; 64: 105-111, 2018 02.
Article in English | MEDLINE | ID: mdl-29636157

ABSTRACT

INTRODUCTION: Seat belt use provides significant public health benefit, however, most public awareness campaigns have generally focused on seat belt use rather than encouraging adults to improve seat belt fit with belt placement. This study provides an evaluation of a video-based intervention to improve adult belt fit assessing whether a video-based intervention can target beliefs and knowledge of seat belt placement and be perceived as relevant by the target audience. METHOD: An intervention group of 29 adults (15 women and 14 men) and a comparison group of 99 adults (41 women and 47 men) participated. RESULTS: The intervention group had significantly more favorable beliefs around belt fit than the comparison group related to Health Belief Model constructs of higher self-efficacy, greater benefits, and fewer barriers. The intervention group was also significantly better at accurately drawing belt fit than the comparison group. The video intervention was described as relevant, interesting, and the intervention group favored the provision of a diverse sample of models in the intervention. CONCLUSIONS: Overall, the study provides insight into relevant target beliefs for an intervention focused on belt fit and suggests that a brief video-based intervention in the style of a public service announcement may be effective in promoting positive beliefs and knowledge around belt fit. Future efforts should confirm these findings with a larger sample size spanning multiple geographic and demographic areas. PRACTICAL APPLICATIONS: These findings can help better inform intervention initiatives to improve occupant belt fit.


Subject(s)
Accidents, Traffic/prevention & control , Distracted Driving/statistics & numerical data , Information Dissemination , Seat Belts/statistics & numerical data , Accidents, Traffic/statistics & numerical data , Adult , Aged , Female , Humans , Male , Middle Aged , Models, Theoretical , Public Health , Young Adult
20.
J Safety Res ; 64: 93-104, 2018 02.
Article in English | MEDLINE | ID: mdl-29636173

ABSTRACT

INTRODUCTION: Previous laboratory studies have demonstrated that some drivers position their seat belts suboptimally. Specifically, the lap portion of the belt may be higher and farther forward relative to the pelvis than best practice, and the shoulder portion of the belt may be outboard or inboard of mid-shoulder. This study evaluated the performance of a video-based intervention for improving the belt fit obtained by drivers. METHOD: Twenty-nine adult drivers participated in this study. Belt fit was measured before and after the intervention in participants' vehicles and in a laboratory mockup. RESULTS: Data from both the in-vehicle and laboratory belt measures found that 95% of participants sampled improved some aspect of lap belt fit. For the in-vehicle test conditions, participants who lowered the lap belt location (Z) after the intervention showed an improvement of 26 mm on average. Among those participants who shifted the horizontal lap belt location rearward (closer to the pelvis), an average improvement of 36 mm was observed. No significant differences were observed between baseline and post-intervention shoulder belt fit. CONCLUSIONS: The results provide preliminary evidence that an intervention improves driver belt fit. More research is needed to establish what aspects of this intervention affected behavior and how effective such an intervention is in the context of public health. PRACTICAL APPLICATIONS: These findings can help better inform intervention initiatives to improve occupant belt fit.


Subject(s)
Accidents, Traffic/prevention & control , Distracted Driving/statistics & numerical data , Information Dissemination , Seat Belts/statistics & numerical data , Accidents, Traffic/statistics & numerical data , Aged , Female , Humans , Male , Middle Aged , Models, Theoretical , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL
...