Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38911435

ABSTRACT

CasDinG is an ATP-dependent 5'-3' DNA helicase essential for bacterial Type IV-A1 CRISPR associated immunity. CasDinG contains an essential N-terminal domain predicted to bind DNA. To better understand the role of the N-terminal domain, we attempted to co-crystallize CasDinG with DNA substrates. We successfully crystallized CasDinG in a tightly packed, crystal conformation with previously unobserved unit cell dimensions. However, the structure lacked electron density for a bound DNA substrate and the CasDinG N-terminal domain. Additionally, the tight crystal packing disallowed space for the N-terminal domain, indicating that the N-terminal domain was proteolyzed before crystallization. Follow up experiments revealed that the N-terminal domain of CasDinG is proteolyzed after a few days at room temperature, but is protected from proteolysis at 4°C. These data provide a distinct x-ray crystal structure of CasDinG and indicate the essential N-terminal domain of CasDinG is prone to proteolysis.

2.
Nature ; 613(7944): 588-594, 2023 01.
Article in English | MEDLINE | ID: mdl-36599979

ABSTRACT

Bacterial abortive-infection systems limit the spread of foreign invaders by shutting down or killing infected cells before the invaders can replicate1,2. Several RNA-targeting CRISPR-Cas systems (that is, types III and VI) cause abortive-infection phenotypes by activating indiscriminate nucleases3-5. However, a CRISPR-mediated abortive mechanism that leverages indiscriminate DNase activity of an RNA-guided single-effector nuclease has yet to be observed. Here we report that RNA targeting by the type V single-effector nuclease Cas12a2 drives abortive infection through non-specific cleavage of double-stranded DNA (dsDNA). After recognizing an RNA target with an activating protospacer-flanking sequence, Cas12a2 efficiently degrades single-stranded RNA (ssRNA), single-stranded DNA (ssDNA) and dsDNA. Within cells, the activation of Cas12a2 induces an SOS DNA-damage response and impairs growth, preventing the dissemination of the invader. Finally, we harnessed the collateral activity of Cas12a2 for direct RNA detection, demonstrating that Cas12a2 can be repurposed as an RNA-guided RNA-targeting tool. These findings expand the known defensive abilities of CRISPR-Cas systems and create additional opportunities for CRISPR technologies.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , DNA , RNA , CRISPR-Associated Proteins/metabolism , DNA/metabolism , DNA, Single-Stranded/metabolism , RNA/metabolism , SOS Response, Genetics , DNA Damage , RNA, Guide, CRISPR-Cas Systems , Gene Editing
3.
Nature ; 613(7944): 582-587, 2023 01.
Article in English | MEDLINE | ID: mdl-36599980

ABSTRACT

Cas12a2 is a CRISPR-associated nuclease that performs RNA-guided, sequence-nonspecific degradation of single-stranded RNA, single-stranded DNA and double-stranded DNA following recognition of a complementary RNA target, culminating in abortive infection1. Here we report structures of Cas12a2 in binary, ternary and quaternary complexes to reveal a complete activation pathway. Our structures reveal that Cas12a2 is autoinhibited until binding a cognate RNA target, which exposes the RuvC active site within a large, positively charged cleft. Double-stranded DNA substrates are captured through duplex distortion and local melting, stabilized by pairs of 'aromatic clamp' residues that are crucial for double-stranded DNA degradation and in vivo immune system function. Our work provides a structural basis for this mechanism of abortive infection to achieve population-level immunity, which can be leveraged to create rational mutants that degrade a spectrum of collateral substrates.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , RNA , CRISPR-Associated Proteins/antagonists & inhibitors , CRISPR-Associated Proteins/metabolism , DNA/chemistry , DNA/immunology , DNA/metabolism , RNA/chemistry , RNA/metabolism , Enzyme Activation , Catalytic Domain , Substrate Specificity
5.
Front Microbiol ; 12: 671522, 2021.
Article in English | MEDLINE | ID: mdl-34093491

ABSTRACT

Type IV CRISPR systems encode CRISPR associated (Cas)-like proteins that combine with small RNAs to form multi-subunit ribonucleoprotein complexes. However, the lack of Cas nucleases, integrases, and other genetic features commonly observed in most CRISPR systems has made it difficult to predict type IV mechanisms of action and biological function. Here we summarize recent bioinformatic and experimental advancements that collectively provide the first glimpses into the function of specific type IV subtypes. We also provide a bioinformatic and structural analysis of type IV-specific proteins within the context of multi-subunit (class 1) CRISPR systems, informing future studies aimed at elucidating the function of these cryptic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...