Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 359: 142320, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735490

ABSTRACT

Population declines were documented in multiple ruminant species in Montana and surrounding states starting in 1995. While weather, food sources, and predation certainly contributed, the declines were often attributed, at least partly, to unexplained factors. Use of teratogenic agrichemicals, notably neonicotinoid insecticides, fungicides, and glyphosate-based herbicides, massively increased regionally in 1994-96. The question explored in this review is whether this vastly increased use of these teratogenic pesticides might have contributed to observed population declines. We provide references and data documenting that specific developmental malformations on vertebrates can be associated with exposure to one or more of these agrichemicals. These pesticides are known to disrupt thyroid and other hormonal functions, mitochondrial functions, and biomineralization, all of which are particularly harmful to developing fetuses. Exposures can manifest as impaired embryonic development of craniofacial features, internal and reproductive organs, and musculoskeletal/integumental systems, often resulting in reproductive failure or weakened neonates. This paper reviews: a) studies of ruminant populations in the region, especially elk and white-tailed deer, prior to and after 1994; b) published and new data on underdeveloped facial bones in regional ruminants; c) published and new data on reproductive abnormalities in live and necropsied animals before and after 1994; and d) studies documenting the effects of exposures to three of the most applied teratogenic chemicals. While answers to the question posed above are complex and insufficient evidence is available for definitive answers, this review provides ideas for further consideration.


Subject(s)
Pesticides , Ruminants , Teratogens , Animals , Teratogens/toxicity , Pesticides/toxicity , Population Dynamics , Deer , Herbicides/toxicity , Environmental Pollutants/toxicity , United States , Glyphosate
2.
Environ Pollut ; 257: 113612, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31784269

ABSTRACT

Coral reefs worldwide are degrading at alarming rates due to local and global stressors. There are ongoing needs for bioindicator systems that can be used to assess reef health status, the potential for recovery following destructive events such as tropical storms, and for the success of coral transplants. Benthic foraminiferal shells are ubiquitous components of carbonate sediment in reef environments that can be sampled at minimal cost and environmental impact. Here we review the development and application of the FoRAM Index (FI), which provides a bioindicator metric for water quality that supports reef accretion. We outline the strengths and limitations of the FI, and propose how it can be applied more effectively across different geographical regions.


Subject(s)
Anthozoa , Environmental Monitoring/methods , Foraminifera , Animals , Coral Reefs , Environmental Biomarkers , Water Quality
3.
PeerJ ; 6: e5304, 2018.
Article in English | MEDLINE | ID: mdl-30186672

ABSTRACT

The uses of fluorescent microscopy and fluorescent probes, such as the metabolically activated probe CellTracker™  Green CMFDA (CTG), have become common in studies of living Foraminifera. This metabolic requirement, as well as the relatively quick production of the fluorescent reaction products, makes CTG a prime candidate for determining mortality in bioassay and other laboratory experiments. Previous work with the foraminifer Amphistegina gibbosa, which hosts diatom endosymbionts, has shown that the species is capable of surviving both acute chemical exposure and extended periods of total darkness by entering a low-activity dormant state. This paper explores the use of CTG and fluorescent microscopy to determine mortality in such experiments, as well as to explore the physiology of dormant foraminifers. The application of CTG was found to be complicated by the autofluorescence of the diatom symbionts, which masks the signal of the CTG, as well as by interactions between CTG and propylene glycol, a chemical of interest known to cause dormancy. These complications necessitated adapting methods from earlier studies using CTG. Here we present observations on CTG fluorescence and autofluorescence in A. gibbosa following both chemical exposure and periods of total darkness. While CTG can indicate vital activity in dormant foraminifers, complications include underestimates of total survival and recovery, and falsely indicating dead individuals as live due to rapid microbial colonization. Nonetheless, the brightness of the CTG signal in dormant individuals exposed to propylene glycol supports previously published results of survival patterns in A. gibbosa. Observations of CTG fluorescence in individuals kept for extended periods in aphotic conditions indicate uptake of CTG may begin within 30 min of exposure to light, suggesting darkness-induced dormancy and subsequent recovery can occur on short time scales. These results suggest that CTG accurately reflects changes associated with dormancy, and can be useful in laboratory experiments utilizing symbiont-bearing foraminifers.

4.
PLoS One ; 12(7): e0179753, 2017.
Article in English | MEDLINE | ID: mdl-28683118

ABSTRACT

Shallow marine ecosystems naturally experience fluctuating physicochemical conditions across spatial and temporal scales. Widespread coral-bleaching events, induced by prolonged heat stress, highlight the importance of how the duration and frequency of thermal stress influence the adaptive physiology of photosymbiotic calcifiers. Large benthic foraminifera harboring algal endosymbionts are major tropical carbonate producers and bioindicators of ecosystem health. Like corals, they are sensitive to thermal stress and bleach at temperatures temporarily occurring in their natural habitat and projected to happen more frequently. However, their thermal tolerance has been studied so far only by chronic exposure, so how they respond under more realistic episodic heat-event scenarios remains unknown. Here, we determined the physiological responses of Amphistegina gibbosa, an abundant western Atlantic foraminifera, to four different treatments--control, single, episodic, and chronic exposure to the same thermal stress (32°C)--in controlled laboratory cultures. Exposure to chronic thermal stress reduced motility and growth, while antioxidant capacity was elevated, and photosymbiont variables (coloration, oxygen-production rates, chlorophyll a concentration) indicated extensive bleaching. In contrast, single- and episodic-stress treatments were associated with higher motility and growth, while photosymbiont variables remained stable. The effects of single and episodic heat events were similar, except for the presumable occurrence of reproduction, which seemed to be suppressed by both episodic and chronic stress. The otherwise different responses between treatments with thermal fluctuations and chronic stress indicate adaptation to thermal peaks, but not to chronic exposure expected to ensue when baseline temperatures are elevated by climate change. This firstly implies that marine habitats with a history of fluctuating thermal stress potentially support resilient physiological mechanisms among photosymbiotic organisms. Secondly, there seem to be temporal constraints related to heat events among coral reef environments and reinforces the importance of temporal fluctuations in stress exposure in global-change studies and projections.


Subject(s)
Adaptation, Physiological , Anthozoa/physiology , Chlorophyta/physiology , Models, Statistical , Stress, Physiological , Animals , Antioxidants/metabolism , Chlorophyll/biosynthesis , Chlorophyll A , Climate Change , Coral Reefs , Ecosystem , Hot Temperature , Symbiosis/physiology
5.
J Eukaryot Microbiol ; 50(5): 324-33, 2003.
Article in English | MEDLINE | ID: mdl-14563170

ABSTRACT

Amphistegina are the most common foraminifers with algal endosymbionts found on reefs and carbonate shelves worldwide. Like zooxanthellate corals and other reef organisms with algal symbionts, Amphistegina respond to photoxidative stress by bleaching. This paper documents ultrastructural changes that occur during bleaching under field and laboratory conditions. Nine chambers from the outer whorl of each of 22 normal-appearing and 11 partly bleached specimens of Amphistegina gibbosa, which were collected from Conch Reef, Florida, USA, were examined using transmission electron microscopy. The condition and numbers of algal symbionts, as well as the cell area occupied by 10 other intracellular structures of the host, were quantified. Normal-appearing specimens averaged three times more viable symbionts and less than a fourth as many deteriorating symbionts as partly bleached specimens. Foraminifers experimentally exposed to visible light intensities > or = 13 micromole photon m(-2) s(-1) for 35 d were statistically similar to partly bleached field specimens in the number and condition of symbionts, and in chamber area occupied by the evaluated host structures. Exposure to 32 degrees C water temperature at 6-8 micromole photon m(-2) s(-1) for 28 d induced symbiont loss but did not degrade host endoplasm.


Subject(s)
Eukaryota/ultrastructure , Animals , Ecosystem , Eukaryota/physiology , Florida , Light/adverse effects , Microscopy, Electron , Symbiosis/physiology
6.
Environ Monit Assess ; 81(1-3): 221-38, 2003.
Article in English | MEDLINE | ID: mdl-12620018

ABSTRACT

Coral reef communities are threatened worldwide. Resource managers urgently need indicators of the biological condition of reef environments that can relate data acquired through remote-sensing, water-quality and benthic-community monitoring to stress responses in reef organisms. The "FORAM" (Foraminifera in Reef Assessment and Monitoring) Index (FI) is based on 30 years of research on reef sediments and reef-dwelling larger foraminifers. These shelled protists are ideal indicator organisms because: Foraminifers are widely used as environmental and paleoenvironmental indicators in many contexts. Reef-building, zooxanthellate corals and foraminifers with algal symbionts have similar water-quality requirements. The relatively short life spans of foraminifers as compared with long-lived colonial corals facilitate differentiation between long-term water-quality decline and episodic stress events. Foraminifers are relatively small and abundant, permitting statistically significant sample sizes to be collected quickly and relatively inexpensively, ideally as a component of comprehensive monitoring programs; and, collection of foraminifers has minimal impact on reef resources. USEPA guidelines for ecological indicators are used to evaluate the Fl. Data required are foraminiferal assemblages from surface sediments of reef-associated environments. The Fl provides resource managers with a simple procedure for determining the suitability of benthic environments for communities dominated by algal symbiotic organisms. The FI can be applied independently, or incorporated into existing or planned monitoring efforts. The simple calculations require limited computer capabilities and therefore can be applied readily to reef-associated environments worldwide. In addition, the foraminiferal shells collected can be subjected to morphometric and geochemical analyses in areas of suspected heavy-metal pollution, and the data sets for the index can be used with other monitoring data in detailed multidimensional assessments.


Subject(s)
Anthozoa , Ecosystem , Environmental Monitoring/methods , Eukaryota , Zooplankton , Animals , Biomarkers/analysis , Data Collection , Population Dynamics , Reference Values , United States , United States Environmental Protection Agency
SELECTION OF CITATIONS
SEARCH DETAIL
...