Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 17727, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489494

ABSTRACT

Glioblastoma is the most lethal primary malignant brain tumor in adults. Simplified two-dimensional (2D) cell culture and neurospheres in vitro models fail to recapitulate the complexity of the tumor microenvironment, limiting its ability to predict therapeutic response. Three-dimensional (3D) scaffold-based models have emerged as a promising alternative for addressing these concerns. One such 3D system is gelatin methacrylate (GelMA) hydrogels, and we aimed to understand the suitability of using this system to mimic treatment-resistant glioblastoma cells that reside in specific niches. We characterized the phenotype of patient-derived glioma cells cultured in GelMA hydrogels (3D-GMH) for their tumorigenic properties using invasion and chemoresponse assays. In addition, we used integrated single-cell and spatial transcriptome analysis to compare cells cultured in 3D-GMH to neoplastic cells in vivo. Finally, we assessed tumor-immune cell interactions with a macrophage infiltration assay and a cytokine array. We show that the 3D-GMH system enriches treatment-resistant mesenchymal cells that are not represented in neurosphere cultures. Cells cultured in 3D-GMH resemble a mesenchymal-like cellular phenotype found in perivascular and hypoxic regions and recruit macrophages by secreting cytokines, a hallmark of the mesenchymal phenotype. Our 3D-GMH model effectively mimics the phenotype of glioma cells that are found in the perivascular and hypoxic niches of the glioblastoma core in situ, in contrast to the neurosphere cultures that enrich cells of the infiltrative edge of the tumor. This contrast highlights the need for due diligence in selecting an appropriate model when designing a study's objectives.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Hydrogels , Tumor Microenvironment/physiology , Cell Culture Techniques , Cell Line, Tumor , Gelatin , Gene Expression Profiling , Humans , Methacrylates
2.
Sci Rep ; 8(1): 2893, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440656

ABSTRACT

Identification and isolation of low-frequency cells of interest from a heterogeneous cell mixture is an important aspect of many diagnostic applications (including enumeration of circulating tumor cells) and is integral to various assays in (cancer) biology. Current techniques typically require expensive instrumentation and are not amenable to high throughput. Here, we demonstrate a simple and effective platform for cell detection and isolation using gold nanoparticles (Au NPs) conjugated with hyaluronic acid (HA) i.e. Au-PEG-HA NPs. The proposed platform exploits ligand-receptor chemistry to detect/isolate cells with high specificity and efficiency. When the Au-PEG-HA NPs come in contact with cells that express CD44 (the receptor for HA), a clear colorimetric change occurs (along with an accompanying SPR peak shift from 521 nm to 559 nm) in the solution due to NPs-cell interaction. This clearly discernible, colorimetric change can be leveraged by point-of-care devices employed in diagnostic applications. Finally, we show that we can successfully isolate viable cells from a heterogeneous cell population (including from human blood samples) with high specificity, which can be used in further downstream applications. The developed NPs-based platform can be a convenient and cost-efficient alternative for diagnostic applications and for cell isolation or sorting in research laboratories.


Subject(s)
Cell Separation/methods , Gold/chemistry , Hyaluronan Receptors/chemistry , Metal Nanoparticles/chemistry , Animals , Humans , Hyaluronan Receptors/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Ligands , Mice , NIH 3T3 Cells , Polyethylene Glycols/chemistry , Time Factors
3.
ACS Appl Mater Interfaces ; 8(34): 22005-17, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27494432

ABSTRACT

Recent studies have shown that three-dimensional (3D) culture environments allow the study of cellular responses in a setting that more closely resembles the in vivo milieu. In this context, hydrogels have become popular scaffold options for the 3D cell culture. Because the mechanical and biochemical properties of culture matrixes influence crucial cell behavior, selecting a suitable matrix for replicating in vivo cellular phenotype in vitro is essential for understanding disease progression. Gelatin methacrylate (GelMA) hydrogels have been the focus of much attention because of their inherent bioactivity, favorable hydration and diffusion properties, and ease-of-tailoring of their physicochemical characteristics. Therefore, in this study we examined the efficacy of GelMA hydrogels as a suitable platform to model specific attributes of breast cancer. We observed increased invasiveness in vitro and increased tumorigenic ability in vivo in breast cancer cells cultured on GelMA hydrogels. Further, cells cultured on GelMA matrixes were more resistant to paclitaxel treatment, as shown by the results of cell-cycle analysis and gene expression. This study, therefore, validates GelMA hydrogels as inexpensive, cell-responsive 3D platforms for modeling key characteristics associated with breast cancer metastasis, in vitro.


Subject(s)
Hydrogels/chemistry , Biomimetics , Breast Neoplasms , Gelatin , Humans , Methacrylates , Neoplasm Invasiveness
SELECTION OF CITATIONS
SEARCH DETAIL
...