Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 53(6): 2027-2039, 2021 03.
Article in English | MEDLINE | ID: mdl-33368717

ABSTRACT

Increased dependence on visual cues in Parkinson's disease (PD) can unbalance the perception-action loop, impair multisensory integration, and affect everyday function of PD patients. It is currently unknown why PD patients seem to be more reliant on their visual cues. We hypothesized that PD patients may be overconfident in the reliability (precision) of their visual cues. In this study we tested coherent visual motion perception in PD, and probed subjective (self-reported) confidence in their visual motion perception. Twenty patients with idiopathic PD, 21 healthy aged-matched controls and 20 healthy young adult participants were presented with visual stimuli of moving dots (random dot kinematograms). They were asked to report: (1) whether the aggregate motion of dots was to the left or to the right, and (2) how confident they were that their perceptual discrimination was correct. Visual motion discrimination thresholds were similar (unimpaired) in PD compared to the other groups. By contrast, PD patients were significantly overconfident in their visual perceptual decisions (p = .002 and p < .001 vs. the age-matched and young adult groups, respectively). These results suggest intact visual motion perception, but overestimation of visual cue reliability, in PD. Overconfidence in visual (vs. other, e.g., somatosensory) cues could underlie increased visual dependence and impaired multisensory/sensorimotor integration in PD. It could thereby contribute to gait and balance impairments, and affect everyday activities, such as driving. Future work should investigate and compare PD confidence in somatosensory function. A better understanding of altered sensory reliance might open up new avenues to treat debilitating PD symptoms.


Subject(s)
Motion Perception , Parkinson Disease , Adult , Cues , Humans , Reproducibility of Results , Visual Perception , Young Adult
2.
Eur J Neurosci ; 53(7): 2376-2387, 2021 04.
Article in English | MEDLINE | ID: mdl-32141143

ABSTRACT

Parkinson's disease (PD), best characterized by its classic motor symptoms, also manifests non-motor symptoms including perceptual impairments. Normal motor and perceptual brain functions interact continuously in an action-perception loop; hence, perceptual and motor dysfunction in PD are likely also intertwined. A vital skill in order to maintain balance, and to move around in the environment is the ability to perceive one's own motion in space (self-motion perception). Self-motion perception is a complex brain process, that requires the integration of information from visual (optic flow), vestibular (gravito-inertial), and somatosensory senses. Yet, not much is known about self-motion perception or multisensory integration in PD. In this review, we highlight the need to better study these important functions in PD. We review perceptual deficits in underlying functions required for adept self-motion perception (visual, vestibular and somatosensory, as well as multisensory integration) and address how these might affect self-motion perception and motor function in PD. We propose that dysfunction of central brain mechanisms, implicated in impaired visual, vestibular and somatosensory function, likely impact self-motion perception in PD. Recent evidence suggests that visual and multisensory integration mechanisms of self-motion perception are indeed impaired in PD. This can affect motor control, gait and balance. Future research is needed to better investigate this important topic. A better understanding of self-motion perception and multisensory integration in PD may aid diagnosis and subtyping and may open new avenues for novel therapies to treat debilitating motor symptoms, including gait and balance impairment, using sensory augmentation devices or sensory retraining.


Subject(s)
Motion Perception , Parkinson Disease , Vestibule, Labyrinth , Humans , Motion , Visual Perception
3.
Brain Commun ; 2(1): fcaa035, 2020.
Article in English | MEDLINE | ID: mdl-32954293

ABSTRACT

Parkinson's disease is prototypically a movement disorder. Although perceptual and motor functions are highly interdependent, much less is known about perceptual deficits in Parkinson's disease, which are less observable by nature, and might go unnoticed if not tested directly. It is therefore imperative to seek and identify these, to fully understand the challenges facing patients with Parkinson's disease. Also, perceptual deficits may be related to motor symptoms. Posture, gait and balance, affected in Parkinson's disease, rely on veridical perception of one's own motion (self-motion) in space. Yet it is not known whether self-motion perception is impaired in Parkinson's disease. Using a well-established multisensory paradigm of heading discrimination (that has not been previously applied to Parkinson's disease), we tested unisensory visual and vestibular self-motion perception, as well as multisensory integration of visual and vestibular cues, in 19 Parkinson's disease, 23 healthy age-matched and 20 healthy young-adult participants. After experiencing vestibular (on a motion platform), visual (optic flow) or multisensory (combined visual-vestibular) self-motion stimuli at various headings, participants reported whether their perceived heading was to the right or left of straight ahead. Parkinson's disease participants and age-matched controls were tested twice (Parkinson's disease participants on and off medication). Parkinson's disease participants demonstrated significantly impaired visual self-motion perception compared with age-matched controls on both visits, irrespective of medication status. Young controls performed slightly (but not significantly) better than age-matched controls and significantly better than the Parkinson's disease group. The visual self-motion perception impairment in Parkinson's disease correlated significantly with clinical disease severity. By contrast, vestibular performance was unimpaired in Parkinson's disease. Remarkably, despite impaired visual self-motion perception, Parkinson's disease participants significantly overweighted the visual cues during multisensory (visual-vestibular ) integration (compared with Bayesian predictions of optimal integration) and significantly more than controls. These findings indicate that self-motion perception in Parkinson's disease is affected by impaired visual cues and by suboptimal visual-vestibular integration (overweighting of visual cues). Notably, vestibular self-motion perception was unimpaired. Thus, visual self-motion perception is specifically impaired in early-stage Parkinson's disease. This can impact Parkinson's disease diagnosis and subtyping. Overweighting of visual cues could reflect a general multisensory integration deficit in Parkinson's disease, or specific overestimation of visual cue reliability. Finally, impaired self-motion perception in Parkinson's disease may contribute to impaired balance and gait control. Future investigation into this connection might open up new avenues of alternative therapies to better treat these difficult symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...