Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Invert Neurosci ; 20(4): 17, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978688

ABSTRACT

Cestodes are common gastrointestinal parasites of humans and livestock. They attach to the host gut and, without a mouth or intestinal system, absorb nutrients through their epidermis. Here we show that despite this simplified anatomy and sessile lifestyle, they maintain a complex neuromuscular system. We used fluorescently labelled phalloidin as a specific probe for filamentous actin to define the overall organisation of several distinct muscle systems in the cyclophyllidean Moniezia expansa. Like all flatworms, the body wall musculature below the neodermis of this intestinal parasite of sheep is characterised by outer circular and inner longitudinal muscle fibres. Diagonal fibres, typically found in free-living and trematode platyhelminths, on the other hand, are notably absent. Prominent longitudinal sheaths dominate the parenchyma and provide retractor muscles to the four acetabula in the scolex; they attach at the bottom of each cup-shaped holdfast. Within sexually mature proglottids, circular fibres dominate the duct walls of the male and female reproductive systems. Nerve cells and fibres that express serotonin or neuropeptide F supply well-developed innervation to several of the described muscle systems: emanating from the central nervous system, fibres in the periphery develop pervasive nerve nets that anastomose within body wall musculature as well as the parenchymal longitudinal and oblique muscle fibres, and innervate the sexual organs and gonopore in mature proglottids. Using homology searches, we provide evidence for 20 neuropeptide precursors together with four prepropeptide processing enzymes as well as several 5-HT signalling components to be represented in the Moniezia transcriptome.


Subject(s)
Cestoda/physiology , Muscles/physiology , Nervous System , Actins , Animals , Neuropeptides , Phalloidine , Sheep
2.
PLoS Negl Trop Dis ; 10(9): e0004994, 2016 09.
Article in English | MEDLINE | ID: mdl-27622752

ABSTRACT

Fascioliasis (or fasciolosis) is a socioeconomically important parasitic disease caused by liver flukes of the genus Fasciola. Flukicide resistance has exposed the need for new drugs and/or a vaccine for liver fluke control. A rapidly improving 'molecular toolbox' for liver fluke encompasses quality genomic/transcriptomic datasets and an RNA interference platform that facilitates functional genomics approaches to drug/vaccine target validation. The exploitation of these resources is undermined by the absence of effective culture/maintenance systems that would support in vitro studies on juvenile fluke development/biology. Here we report markedly improved in vitro maintenance methods for Fasciola hepatica that achieved 65% survival of juvenile fluke after 6 months in standard cell culture medium supplemented with 50% chicken serum. We discovered that this long-term maintenance was dependent upon fluke growth, which was supported by increased proliferation of cells resembling the "neoblast" stem cells described in other flatworms. Growth led to dramatic morphological changes in juveniles, including the development of the digestive tract, reproductive organs and the tegument, towards more adult-like forms. The inhibition of DNA synthesis prevented neoblast-like cell proliferation and inhibited growth/development. Supporting our assertion that we have triggered the development of juveniles towards adult-like fluke, mass spectrometric analyses showed that growing fluke have an excretory/secretory protein profile that is distinct from that of newly-excysted juveniles and more closely resembles that of ex vivo immature and adult fluke. Further, in vitro maintained fluke displayed a transition in their movement from the probing behaviour associated with migrating stage worms to a slower wave-like motility seen in adults. Our ability to stimulate neoblast-like cell proliferation and growth in F. hepatica underpins the first simple platform for their long-term in vitro study, complementing the recent expansion in liver fluke resources and facilitating in vitro target validation studies of the developmental biology of liver fluke.


Subject(s)
Cell Proliferation , Fasciola hepatica/growth & development , Fascioliasis/parasitology , Life Cycle Stages , RNA Interference , Animals , Culture Techniques , Fasciola hepatica/pathogenicity , Fasciola hepatica/ultrastructure , Female , Fluorescent Dyes , Male , Phenotype
3.
Parasitol Res ; 113(11): 3935-46, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25098344

ABSTRACT

Caballeria liewi Lim, 1995, uses adhesive secretions from the head organs and posterior secretory systems to assist in locomotion and attachment. Ultrastructural investigations show that the head organs of C. liewi consist of three pairs of antero-lateral pit-like openings bearing microvilli and ducts leading from two types of uninucleated gland cells (located lateral to the pharynx), one type producing rod-like (S1) bodies with an electron-dense matrix containing less electron-dense vesicles and the second type producing oval (S2) bodies with a homogeneous electron-dense matrix. Interlinking band-like structures are observed between S1 bodies and between S2 bodies. S1 body is synthesised in the granular endoplasmic reticulum, transported to a Golgi complex to be packaged into vesicles and routed into ducts for exudation. The synthesis of the S2 body is unresolved. Haptoral secretions manifested externally as net-like structures are derived from dual electron-dense (DED) secretory body produced in the peduncular gland cells. The DED body consists of a less electron-dense oval core in a homogeneous electron-dense matrix. On exocytosis into the pyriform haptoral reservoir, DED bodies are transformed into a secretion with two types of inclusions (less electron-dense oval and electron-dense spherical inclusions) in an electron-dense matrix. The secretions are further transformed (as small, oval, electron-dense bodies) when transported to the superficial anchor grooves, and on exudation into the gill tissues, the secretions become an electron-dense matrix. Secretory bodies associated with uniciliated structures, anchor sleeves and marginal hooks are also observed.


Subject(s)
Head/anatomy & histology , Secretory Pathway , Trematoda/ultrastructure , Animals , Bodily Secretions , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Pharynx
4.
Parasitol Int ; 56(4): 297-307, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17662646

ABSTRACT

Phalloidin fluorescence technique, enzyme cytochemistry and immunocytochemistry in conjunction with confocal scanning laser microscopy were used for the first time to describe the nervous and muscle systems of the viviparous monogenean parasite, Gyrodactylus rysavyi inhabiting the gills and skin of the Nile catfish Clarias gariepinus. The body wall muscles are composed of an outer layer of circular fibres, an intermediate layer of paired longitudinal fibres and an inner layer of well-spaced bands of diagonal fibres arranged in two crossed directions. The musculature of the pharynx, intestine, reproductive tract and the most prominent muscles of the haptor were also described. Two characteristic muscular pads were found lying in the anterior region of the haptor in close contact with the hamuli. To each one of these pads, a group of ventral extrinsic muscles was connected. The role of this ventral extrinsic muscle in the body movement was discussed. The mechanism operating the marginal hooklets was also discussed. The central nervous system (CNS) consists of paired cerebral ganglia from which three pairs of longitudinal ventral, lateral and dorsal nerve cords arise. The nerve cords are connected at intervals by many transverse connectives. The CNS is better developed ventrally than dorsally or laterally and it has the highest reactivity for all neuroactive substances examined. Both the central and the peripheral nervous system (PNS) are bilaterally symmetrical. Structural and functional correlates of the neuromusculature of the pharynx, haptor and reproductive tracts were explained. The results implicated acetylcholine, FMRFamide-related peptides (FaRPs) and serotonin in sensory and motor function. The results were compared with those of the monogeneans Macrogyrodactylus clarii and M. congolensis inhabiting the gills and skin respectively of the same host fish C. gariepinus.


Subject(s)
Catfishes/parasitology , Gills/parasitology , Muscles , Nervous System , Skin Diseases, Parasitic/veterinary , Trematoda/anatomy & histology , Animals , Fish Diseases/parasitology , Immunohistochemistry , Microscopy, Confocal , Muscles/anatomy & histology , Muscles/innervation , Muscles/metabolism , Nervous System/anatomy & histology , Nervous System/metabolism , Skin Diseases, Parasitic/parasitology , Trematoda/metabolism , Trematoda/physiology , Trematode Infections/parasitology , Trematode Infections/veterinary
5.
Int J Parasitol ; 35(14): 1557-67, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16185693

ABSTRACT

Allatostatins are the largest family of known arthropod neuropeptides. To date more than 150 different arthropod type-A allatostatins have been identified and are characterized by the C-terminal signature, (Y/F)XFG(L/I)amide. Using specific allatostatin antisera, positive immunoreactivity has been identified within the central and peripheral nervous systems of the flatworm (platyhelminth) Procerodes littoralis and the roundworm (nematode) Panagrellus redivivus. Comparative analyses of the allatostatin-like immunoreactivity and that of other known helminth neuropeptides (FMRFamide-like peptides [FLPs]) indicate differences in the distribution of these peptide families. Specific differences in neuropeptide distribution have been noted within the pharyngeal innervation of flatworms and in the cephalic papillary neurons of nematodes. In arthropods, type-A allatostatins have functions that include potent myoactivity. In this study, seven members of the allatostatin superfamily induced concentration-dependent contractions of flatworm muscle fibres. Pharmacological studies indicate that these peptides do not interact with muscle-based FLP receptors. The type-A allatostatins, therefore, represent the second family of neuropeptides that induce muscle contraction in flatworms. Although the majority of arthropod type-A allatostatins examined did not affect the somatic body wall muscle or the ovijector of the pig nematode, Ascaris suum, two type-A allatostatins (GDGRLYAFGLamide and DRLYSFGLamide) exhibited significant inhibitory effects on the A. suum ovijector at 10 microM. These data suggest that allatostatin-like peptides and receptors occur in helminths. Further, although arthropod type-A allatostatins display inter-phyla activities, their receptors are less compelling as potential targets for broad-spectrum parasiticides (endectocides) than FLP receptors.


Subject(s)
Helminths/chemistry , Neuropeptides/analysis , Animals , Ascaris/chemistry , Biological Assay , Female , Immunohistochemistry/methods , Male , Microscopy, Confocal , Muscle Fibers, Skeletal/chemistry , Platyhelminths/chemistry , Receptors, Invertebrate Peptide
6.
Parasitol Res ; 93(3): 196-206, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15133660

ABSTRACT

Gross anatomy of muscle and sensory/motor innervation of adult and intramolluscan developmental stages of Echinostoma caproni have been investigated to ascertain the organisation and the functional correlates of any stage-specific patterns of staining. Using indirect immunocytochemistry to demonstrate neuroactive substances and the phalloidin-fluorescence technique for staining myofibril F-actin, the muscle systems and aminergic and peptidergic innervation of daughter rediae, cercariae, metacercariae, and pre- and post-ovigerous adults were examined and compared using confocal scanning laser microscopy. A complex arrangement of specific muscle fibre systems occurs within the body wall (composed of circular, longitudinal and diagonal fibres), suckers (radial, equatorial, meridional), pharynx (radial, circular), gut caeca (mainly circular), cercarial tail (circular, pseudo-striated longitudinal), and ducts of the reproductive system (circular, longitudinal), presumed to serve locomotor, adhesive, alimentary and reproductive functions. Immunostaining for serotonin (5-HT) and FMRFamide-related peptides (FaRPs) was evident throughout the central (CNS) and peripheral (PNS) nervous systems of all stages, and use of dual-labelling techniques demonstrated separate neuronal pathways for 5-HT and FaRP in both CNS and PNS. FaRP expression in the innervation of the ootype wall was demonstrated only in post-ovigerous worms and not in pre-ovigerous worms, suggesting an involvement of FaRP neuropeptides in the process of egg assembly. Comparison of the present findings with those recorded for other digeneans suggests that muscle organisation and innervation patterns in trematodes are highly conserved.


Subject(s)
Echinostoma/anatomy & histology , Echinostoma/ultrastructure , Motor Neurons , Neurons, Afferent , Actins/analysis , Animals , Digestive System/anatomy & histology , Echinostoma/growth & development , FMRFamide/analysis , Ganglia, Invertebrate/anatomy & histology , Ganglia, Invertebrate/chemistry , Genitalia/anatomy & histology , Microscopy, Confocal , Microscopy, Electron, Scanning , Muscle Fibers, Skeletal/ultrastructure , Muscles/anatomy & histology , Nervous System/anatomy & histology , Nervous System/chemistry , Serotonin/analysis , Staining and Labeling
7.
Int J Parasitol ; 34(6): 755-68, 2004 May.
Article in English | MEDLINE | ID: mdl-15111097

ABSTRACT

FMRFamide-related peptides are common to a wide variety of invertebrate species, including helminths and arthropods. In arthropods, five distinct FMRFamide-related peptide subfamilies are recognised: the myosuppressins, extended-FLRFamides, -FMRFamides, -RFamides, and sulfakinins, members of which induce potent and diverse myotropic effects. Whilst >80 FMRFamide-related peptides have been identified in nematodes, only four FMRFamide-related peptides have been characterised from flatworms. The Ascaris suum ovijector/body wall bioassay and the Procerodes littoralis muscle fibre bioassay have proved both reliable and sensitive systems for assessing the functional activities of FMRFamide-related peptides in vitro, and data describing the effects of native FMRFamide-related peptides in these systems are rapidly accumulating. This is the first study to determine the cross-phyla activities of non-native FMRFamide-related peptides in both nematode and flatworm species. In the present study, the effects of 10 arthropod FMRFamide-related peptides (leucomyosuppressin [pQDVDHVFLRFamide], schistoFLRFamide [PDVDHVFLRFamide] and truncated analogues [HVFLRFamide and VFLRFamide], lobster peptide I [TNRNFLRFamide], lobster peptide II [SDRNFLRFamide], manducaFLRFamide II [GNSFLRFamide], manducaFLRFamide III [DPSFLRFamide], calliFMRFamide 4 [KPNQDFMRFamide] and perisulfakinin [EQFDDY(SO(3)H)GHMRFamide]), representing the five subfamilies, were examined on the body wall and ovijector of the parasitic porcine nematode, A. suum and dispersed muscle fibres from the free-living turbellarian, P. littoralis. The muscle activity of the ovijector was found to be modulated significantly by each of the arthropod FMRFamide-related peptides tested; the effects were concentration-dependent, reversible and repeatable. All but one (perisulfakinin) of the 10 arthropod FMRFamide-related peptides examined modulated significantly the activity of A. suum body wall muscle. In addition, all of the arthropod FMRFamide-related peptides examined induced potent concentration-dependent contractions of P. littoralis muscle fibres. These results reveal similarities in the ligand requirement(s) between FMRFamide-related peptide receptors within the Phyla Arthropoda, Nematoda and Platyhelminthes, and indicate significant receptor promiscuity, which highlights the potential of FMRFamide-related peptide receptors as legitimate targets for novel endectocidal agents.


Subject(s)
Ascaris suum/physiology , Invertebrate Hormones/physiology , Neuropeptides/physiology , Oligopeptides/physiology , Turbellaria/physiology , Animals , FMRFamide/physiology , Ligands , Muscle Contraction/physiology , Muscle Fibers, Skeletal/physiology , Peptide Fragments/physiology , Receptors, Invertebrate Peptide/physiology
8.
Micron ; 35(5): 361-90, 2004.
Article in English | MEDLINE | ID: mdl-15006362

ABSTRACT

Microscopy has a long and distinguished history in the study of helminth parasites and has made a singularly outstanding contribution to understanding how these complex animals organise their lives and relate to their hosts. Increasingly, the microscope has been used as a powerful investigative tool in multidisciplinary approaches to parasitological problems, placing emphasis on functional correlates rather than anatomical detail. In doing so, microscopy has also uncovered a number of attributes of parasites that are of wider significance in the field of biology. Parasite surfaces have understandably demanded most of the attention of microscopists, largely as a result of the pioneering studies using transmission electron microscopy. Their findings focused the attention of physiologists and immunologists on the tegument and cuticle of helminths and in doing so helped unravel the complex molecular exchanges that are fundamental to understanding host-parasite interactions. Scanning electron microscopy succeeded in augmenting these data by revealing novel microtopographical features of the host-parasite relationship, as well as proving invaluable in helminth taxonomy and in assessing the efficacy of test substances in drug screens. Control of helminth parasites has never been more critical: problems of drug resistance demand urgent action to identify exploitable targets for new generation anthelmintics. In this regard, the neuropeptide signalling system of helminths is envisioned as central to nerve-muscle function, and thereby a crucial regulatory influence on their motility, alimentation and reproduction. The use of immunocytochemistry interfaced with confocal scanning laser microscopy has not only been instrumental in discovering the peptidergic system of helminths and its potential for chemotherapeutic exploitation, but through increasingly sophisticated bio-imaging technologies has continued to help dissect and analyse the molecular dynamics of this and other cellular systems within these important parasites.


Subject(s)
Helminths/ultrastructure , Animals , Female , Helminth Proteins/physiology , Helminths/pathogenicity , Helminths/physiology , Immunohistochemistry , Male , Microscopy, Confocal , Microscopy, Electron , Microscopy, Electron, Scanning , Nervous System/ultrastructure , Neuropeptides/physiology
9.
Int J Parasitol ; 34(1): 83-93, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14711593

ABSTRACT

Neuropeptide F is the most abundant neuropeptide in parasitic flatworms and is analogous to vertebrate neuropeptide Y. This paper examines the effects of neuropeptide F on tetrathyridia of the cestode Mesocestoides vogae and provides preliminary data on the signalling mechanisms employed. Neuropeptide F (>/=10 microM) had profound excitatory effects on larval motility in vitro. The effects were insensitive to high concentrations (1 mM) of the anaesthetic procaine hydrochloride suggesting extraneuronal sites of action. Neuropeptide F activity was not significantly blocked by a FMRFamide-related peptide analog (GNFFRdFamide) that was found to inhibit GNFFRFamide-induced excitation indicating the occurrence of distinct neuropeptide F and FMRFamide-related peptide receptors. Larval treatment with guanosine 5'-O-(2-thiodiphosphate) trilithium salt prior to the addition of neuropeptide F completely abolished the excitatory effects indicating the involvement of G-proteins and a G-protein coupled receptor in neuropeptide F activity. Addition of guanosine 5'-O-(2-thiodiphosphate) following neuropeptide F had limited inhibitory effects consistent with the activation of a signalling cascade by the neuropeptide. With respect to Ca(2+) involvement in neuropeptide F-induced excitation of M. vogae larvae, the L-type Ca(2+)-channel blockers verapamil and nifedipine both abolished neuropeptide F activity as did high Mg(+) concentrations and drugs which blocked sarcoplasmic reticulum Ca(2+)-activated Ca(2+)-channels (ryanodine) and sarcoplasmic reticulum Ca(2+) pumps (cyclopiazonic acid). Therefore, both extracellular and intracellular Ca(2+) is important for neuropeptide F excitation in M. vogae. With respect to second messengers, the protein kinase C inhibitor chelerythrine chloride and the adenylate cyclase inhibitor MDL-2330A both abolished neuropeptide F-induced excitation. The involvement of a signalling pathway that involves protein kinase C was further supported by the fact that phorbol-12-myristate-13-acetate, known to directly activate protein kinase C, had direct excitatory effects on larval motility. Although neuropeptide F is structurally analogous to neuropeptide Y, its mode-of-action in flatworms appears quite distinct from the common signalling mechanism seen in vertebrates.


Subject(s)
Mesocestoides/drug effects , Neuropeptides/pharmacology , Signal Transduction/physiology , Animals , Larva , Mesocestoides/physiology , Movement/drug effects , Parasitology/methods
10.
FASEB J ; 18(1): 114-21, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14718392

ABSTRACT

Many neuropeptide transmitters require the presence of a carboxy-terminal alpha-amide group for biological activity. Amidation requires conversion of a glycine-extended peptide intermediate into a C-terminally amidated product. This post-translational modification depends on the sequential action of two enzymes (peptidylglycine alpha-hydroxylating monooxygenase or PHM, and peptidyl-alpha-hydroxyglycine alpha-amidating lyase or PAL) that in most eukaryotes are expressed as separate domains of a single protein (peptidylglycine alpha-amidating monooxygenase or PAM). We identified a cDNA encoding PHM in the human parasite Schistosoma mansoni. Transient expression of schistosome PHM (smPHM) revealed functional properties that are different from other PHM proteins; smPHM displays a lower pH-optimum and, when expressed in mammalian cells, is heavily N-glycosylated. In adult worms, PHM is found in the trans-Golgi network and secretory vesicles of both central and peripheral nerves. The widespread occurrence of PHM in the nervous system confirms the important role of amidated neuropeptides in these parasitic flatworms. The differences between schistosome and mammalian PHM suggest that it could be a target for new chemotherapeutics.


Subject(s)
Mixed Function Oxygenases/metabolism , Multienzyme Complexes/metabolism , Schistosoma mansoni/enzymology , Amino Acid Sequence , Animals , Cells, Cultured , DNA, Complementary/analysis , Female , Humans , Male , Mice , Mixed Function Oxygenases/genetics , Molecular Sequence Data , Multienzyme Complexes/genetics , Neurons/enzymology , Schistosoma mansoni/anatomy & histology , Sequence Alignment
11.
Zoology (Jena) ; 107(1): 75-86, 2004.
Article in English | MEDLINE | ID: mdl-16351929

ABSTRACT

The Nemertodermatida are a small group of microscopic marine worms. Recent molecular studies have demonstrated that they are likely to be the earliest extant bilaterian animals. What was the nervous system (NS) of a bilaterian ancestor like? In order to answer that question, the NS of Nemertoderma westbladi was investigated by means of indirect immunofluorescence technique and confocal scanning laser microscopy. The antibodies to a flatworm neuropeptide GYIRFamide were used in combination with anti-serotonin antibodies and phalloidin-TRITC staining. The immunostaining revealed an entirely basiepidermal NS. A ring lying outside the body wall musculature at the level of the statocyst forms the only centralisation, the "brain". No stomatogastric NS has been observed. The GYIRFamide immunoreactive part of the "brain" is formed of loosely packed nerve fibres with multiple small neurones and a few large ones. The peptidergic and aminergic patterns of the NS do not correspond to each other: the former is more developed on the ventral side, the latter is more pronounced on the dorsal side. A pair of GYIRFamide immunoreactive nerve cords innervates the ventral side of the animal, the mouth and the male genital opening. The nemertodermatids studied to-date display no common NS pattern. Possible synapomorphies of the Acoelomorpha are discussed. The study demonstrates that the nemertodermatid NS possesses a number of plesiomorphic features and appears more primitive than the NS in other worms, except the Xenoturbellida. The bilaterian ancestor supposedly possessed only a basiepidermal nerve net and had no centralised brain-like structures and no stomatogastric NS.

12.
Parasitol Res ; 91(1): 12-21, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12851813

ABSTRACT

Cholinergic, serotoninergic and neuropeptidergic components of the nervous system were examined and compared in the progenetic metacercaria and adult gasterostome trematode, Bucephaloides gracilescens in order to provide baseline information on neuronal control of the musculature involved in egg-assembly. Enzyme cytochemistry and indirect immunocytochemical techniques interfaced with confocal scanning laser microscopy demonstrated all three classes of neuroactive substance throughout the central and peripheral nervous systems. A comparable orthogonal arrangement of the central nervous system (CNS) and peripheral array of nerve plexuses was observed in both metacercaria and adult. Staining patterns for cholinergic and peptidergic substances showed significant overlap, while the serotoninergic system was confined to a separate set of neurons. Immunostaining for FMRFamide-related peptides (FaRPs) was strong in the CNS and peripheral innervation to the attachment apparatus of metacercaria and adult but was only found in the innervation of the ootype in ovigerous adults, implicating FaRPs in neuronal control of the muscle of the female reproductive tract during egg-assembly.


Subject(s)
Muscles/anatomy & histology , Nervous System/ultrastructure , Neurotransmitter Agents/metabolism , Trematoda/growth & development , Animals , Cholinesterases/metabolism , Female , Genitalia/innervation , Genitalia/metabolism , Immunohistochemistry , Male , Microscopy, Confocal , Muscles/innervation , Nervous System/anatomy & histology , Neuropeptides/metabolism , Oligopeptides/metabolism , Serotonin/metabolism , Trematoda/anatomy & histology , Trematoda/physiology , Trematoda/ultrastructure
13.
Int J Parasitol ; 33(4): 413-24, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12705934

ABSTRACT

Confocal microscopy interfaced with cytochemical procedures has been used to monitor development of the major muscle systems and associated serotoninergic (5-HT, 5-hydroxytryptamine) and peptidergic (FaRP, FMRFamide-related peptide) innervation of the strigeid trematodes, Apatemon cobitidis proterorhini and Cotylurus erraticus during cultivation in vitro. Sexually undifferentiated metacercariae were successfully grown to ovigerous adults using tissue culture medium NCTC 135, chicken serum and egg albumen. Eggs were produced after 5 days in culture but had abnormal shells and failed to embryonate. 5-HT and FaRP (the flatworm FaRP, GYIRFamide) were localised immunocytochemically in both central and peripheral nervous systems of developing worms. During cultivation, the central serotoninergic and FaRPergic neuronal pathways of the forebody became more extensive, but retained the same basic orthogonal arrangement as found in the excysted metacercaria. Longitudinal extensor and flexor muscles of the hindbody provide support for the developing reproductive complex. The male reproductive tracts were established in advance (day 3) of those of the female system (day 4); completion of the latter was marked by the appearance of the ootype/egg chamber. The inner longitudinal muscle fibres of the female tract appeared prior to the outer and more densely arranged circular muscles. Circular fibres dominate the muscle complement of both alimentary and reproductive tracts. 5-HT- and GYIRFamide-immunoreactivities were demonstrable in the central nervous system (CNS) and subtegumental parasympathetic nervous system (PNS) throughout the culture period, but innervation of the developing reproductive structures was reactive just for 5-HT. Only at the onset of egg production was FaRP-IR observed in the reproductive system and was expressed only in the innervation of the ootype, a finding consistent with the view that FaRPs may regulate egg assembly in platyhelminths.


Subject(s)
Muscle Development/physiology , Nervous System/growth & development , Trematoda/growth & development , Animals , Cell Differentiation , Female , Genitalia, Female/growth & development , Male , Microscopy, Confocal , Microscopy, Electron , Time Factors
14.
J Comp Neurol ; 454(1): 58-64, 2002 Dec 02.
Article in English | MEDLINE | ID: mdl-12410618

ABSTRACT

Neuropeptide Y is one of the most widespread regulatory peptides within the vertebrate nervous system and shares the C-terminal motif [FY]-x(3)-[LIVM]-x(2)-Y-x(3)-[LIVMFY]-x-R-x-R-[YF] with pancreatic polypeptide, peptide YY, and fish pancreatic peptide Y. All four peptides are believed to have arisen from a single ancestral gene through successive gene duplication events in vertebrates. The origin of this peptide family may date back further still; similarly sized peptide transmitters with an identical C-terminal motif have been identified in molluscs and flatworms and designated neuropeptide F (NPF). Cloning of the npf gene from the parasitic flatworm Moniezia expansa identified some unusual features within the peptide precursor organization but, at the same time, provided support for an evolutionary relationship of npf and npy genes through the presence of a single intron at a conserved position. To extend the analysis of the evolutionary relationships between invertebrate NPF and vertebrate NPY family peptides, the NPF precursor from the turbellarian Arthurdendyus triangulatus was characterized. Sequence analysis revealed the npf transcript to be 362 base pairs in length encoding a single open reading frame of 81 amino acids. The precursor comprises a signal peptide followed by the mature peptide of 36 amino acids in length, terminating in the typical invertebrate GRPRF motif, followed by a carboxyterminal glycyl extension. The NPF precursor of A. triangulatus shows significant similarities to the vertebrate NPY peptides. Indeed, the N-terminus of A. triangulatus prepro-NPF corresponds more closely to that of the vertebrate peptide homologs than to that of other invertebrate NPFs isolated to date. Immunocytochemical localization studies have demonstrated NPF immunoreactivity throughout the nervous system of A. triangulatus, particularly in association with muscular structures. The data support an early evolutionary origin for this peptide transmitter family within the nervous system of basal bilaterians.


Subject(s)
Neuropeptide Y/biosynthesis , Neuropeptide Y/genetics , Planarians , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/genetics , Genomic Library , Helminth Proteins/genetics , Introns , Molecular Sequence Data , Nervous System/cytology , Nervous System/metabolism , Organ Specificity , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid
15.
Int J Parasitol ; 32(9): 1095-105, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12117492

ABSTRACT

The present study employed an in situ hybridisation technique to detect the expression of a number of FMRFamide-like peptide encoding (flp) genes, previously identified from Globodera pallida, in whole-mount preparations of the J(2) stage of this worm. gpflp-1, encoding the FMRFamide-related peptide (FaRP) KSAYMRFamide, was expressed in neurones associated with the circumpharyngeal nerve ring and specifically in a number of cell bodies in the lumbar ganglia of the perianal nerve ring. The lumbar ganglia and pre-anal ganglia along with the BDU neurones and a number of cells in the retrovesicular ganglion were observed to express gpflp-2, encoding KNKFEFIRFamide. gpflp-3 (encoding KHEYLRFamide) expression was localised to the anterior ganglion and a number of paired cells posterior to the circumpharyngeal nerve ring whilst expression of gpflp-4, encoding a number of -P(G/Q)VLRFamides, was localised to the retrovesicular ganglion. No expression of gpflp-5 was observed. Identification of the reactive cells has implicated distinct roles for the FaRPs encoded on these genes in regulation of both dorsal and ventral body wall muscles, the musculature of the vulva and in the function of a number of sensory structures in both the head and tail of G. pallida. Comparison with the expression patterns of analogous genes in Caenorhabditis elegans suggests that, whilst some of the encoded peptides are conserved between nematode species, their functions therein are distinct. Furthermore, the expression of some of these genes in a number of interneurones supports the idea that FaRPs fulfil neuromodulatory as well as neurotransmitter roles.


Subject(s)
FMRFamide/genetics , Gene Expression Regulation , Genes, Helminth/genetics , In Situ Hybridization , Tylenchoidea/genetics , Amino Acid Sequence , Animals , Helminth Proteins/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , Sequence Homology, Amino Acid
16.
Curr Top Med Chem ; 2(7): 733-58, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12052188

ABSTRACT

Current problems of drug resistance in parasites and pests demand the identification of new targets and their exploitation through novel drug design and development programs. Neuropeptide signaling systems in helminths (nematodes and platyhelminths = worms) and arthropods are well developed and complex, play a crucial role in many aspects of their biology, and appear to have significant potential as targets for novel drugs. The best-known neuropeptide family in invertebrates is the FMRFamide-related peptides (FaRPs). Amongst many roles, FaRPs potently influence motor function. The genome sequencing projects of Drosophila melanogaster and Caenorhabditis elegans have revealed unexpected complexity within the FaRPergic systems of arthropods and nematodes, although available evidence for platyhelminths indicates structural and functional simplicity. Regardless of these differences, FaRPs potently modulate motor function in arthropods, nematodes and platyhelminths and there appears to be at least some commonality in the FaRPergic signaling systems therein. Moreover, there is now increasing evidence of cross-phyla activity for individual FaRPs, providing clear signals of opportunities for target selection and the identification and development of broad-spectrum drugs.


Subject(s)
Antiparasitic Agents/therapeutic use , Neuropeptides/therapeutic use , Parasites/drug effects , Parasitic Diseases, Animal/drug therapy , Amino Acid Sequence , Animals , Antiparasitic Agents/pharmacology , Arthropods/drug effects , Drug Delivery Systems , Helminths/drug effects , Neuropeptides/chemical synthesis , Neuropeptides/pharmacology , Parasitic Diseases, Animal/prevention & control , Signal Transduction , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...