Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Clin Chest Med ; 45(2): 505-529, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816103

ABSTRACT

Many promising study results as well as technical advances for chest magnetic resonance imaging (MRI) have demonstrated its academic and clinical potentials during the last few decades, although chest MRI has been used for relatively few clinical situations in routine clinical practice. However, the Fleischner Society as well as the Japanese Society of Magnetic Resonance in Medicine have published a few white papers to promote chest MRI in routine clinical practice. In this review, we present clinical evidence of the efficacy of chest MRI for 1) thoracic oncology and 2) pulmonary vascular diseases.


Subject(s)
Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Lung Diseases/diagnostic imaging , Lung Diseases/diagnosis , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/diagnosis , Thoracic Neoplasms/diagnostic imaging , Thoracic Neoplasms/diagnosis , Thoracic Neoplasms/therapy
2.
Eur Radiol ; 34(2): 1065-1076, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37580601

ABSTRACT

OBJECTIVE: The purpose of this study was thus to compare capabilities for quantitative differentiation of non- and minimally invasive adenocarcinomas from other of pulmonary MRIs with ultra-short TE (UTE) obtained with single- and dual-echo techniques (UTE-MRISingle and UTE-MRIDual) and thin-section CT for stage IA lung cancer patients. METHODS: Ninety pathologically diagnosed stage IA lung cancer patients who underwent thin-section standard-dose CT, UTE-MRISingle, and UTE-MRIDual, surgical treatment and pathological examinations were included in this retrospective study. The largest dimension (Dlong), solid portion (solid Dlong), and consolidation/tumor (C/T) ratio of each nodule were assessed. Two-tailed Student's t-tests were performed to compare all indexes obtained with each method between non- and minimally invasive adenocarcinomas and other lung cancers. Receiver operating characteristic (ROC)-based positive tests were performed to determine all feasible threshold values for distinguishing non- or minimally invasive adenocarcinoma (MIA) from other lung cancers. Sensitivity, specificity, and accuracy were then compared by means of McNemar's test. RESULTS: Each index showed significant differences between the two groups (p < 0.0001). Specificities and accuracies of solid Dlong for UTE-MRIDual2nd echo and CTMediastinal were significantly higher than those of solid Dlong for UTE-MRISingle and UTE-MRIDual1st echo and all C/T ratios except CTMediastinal (p < 0.05). Moreover, the specificities and accuracies of solid Dlong and C/T ratio were significantly higher than those of Dlong for each method (p < 0.05). CONCLUSION: Pulmonary MRI with UTE is considered at least as valuable as thin-section CT for quantitative differentiation of non- and minimally invasive adenocarcinomas from other stage IA lung cancers. CLINICAL RELEVANCE STATEMENT: Pulmonary MRI with UTE's capability for quantitative differentiation of non- and minimally invasive adenocarcinomas from other lung cancers in stage IA lung cancer patients is equal or superior to that of thin-section CT. KEY POINTS: • Correlations were excellent for pathologically examined nodules with the largest dimensions (Dlong) and a solid component (solid Dlong) for all indexes (0.95 ≤ r ≤ 0.99, p < 0.0001). • Pathologically examined Dlong and solid Dlong obtained with all methods showed significant differences between non- and minimally invasive adenocarcinomas and other lung cancers (p < 0.0001). • Solid tumor components are most accurately measured by UTE-MRIDual2nd echo and CTMediastinal, whereas the ground-glass component is imaged by UTE-MRIDual1st echo and CTlung with high accuracy. UTE-MRIDual predicts tumor invasiveness with 100% sensitivity and 87.5% specificity at a C/T threshold of 0.5.


Subject(s)
Adenocarcinoma , Lung Diseases , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Retrospective Studies , Tomography, X-Ray Computed/methods , Lung/pathology , Adenocarcinoma/pathology , Magnetic Resonance Imaging/methods
3.
Magn Reson Med Sci ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37661425

ABSTRACT

PURPOSE: Deep learning reconstruction (DLR) has been recommended as useful for improving image quality. Moreover, compressed sensing (CS) or DLR has been proposed as useful for improving temporal resolution and image quality on MR sequences in different body fields. However, there have been no reports regarding the utility of DLR for image quality and T-factor assessment improvements on T2-weighted imaging (T2WI), short inversion time (TI) inversion recovery (STIR) imaging, and unenhanced- and contrast-enhanced (CE) 3D fast spoiled gradient echo (GRE) imaging with and without CS in comparison with thin-section multidetector-row CT (MDCT) for non-small cell lung cancer (NSCLC) patients. The purpose of this study was to determine the utility of DLR for improving image quality and the appropriate sequence for T-category assessment for NSCLC patients. METHODS: As subjects for this study, 213 pathologically diagnosed NSCLC patients who underwent thin-section MDCT and MR imaging as well as T-factor diagnosis were retrospectively enrolled. SNR of each tumor was calculated and compared by paired t-test for each sequence with and without DLR. T-factor for each patient was assessed with thin-section MDCT and all MR sequences, and the accuracy for T-factor diagnosis was compared among all sequences and thin-section CT by means of McNemar's test. RESULTS: SNRs of T2WI, STIR imaging, unenhanced thin-section Quick 3D imaging, and CE-thin-section Quick 3D imaging with DLR were significantly higher than SNRs of those without DLR (P < 0.05). Diagnostic accuracy of STIR imaging and CE-thick- or thin-section Quick 3D imaging was significantly higher than that of thin-section CT, T2WI, and unenhanced thick- or thin-section Quick 3D imaging (P < 0.05). CONCLUSION: DLR is thus considered useful for image quality improvement on MR imaging. STIR imaging and CE-Quick 3D imaging with or without CS were validated as appropriate MR sequences for T-factor evaluation in NSCLC patients.

4.
Diagnostics (Basel) ; 13(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37568881

ABSTRACT

An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.

5.
Eur J Radiol ; 166: 110969, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37454556

ABSTRACT

PURPOSE: To compare the capability of CTs obtained with a silver or copper x-ray beam spectral modulation filter (Ag filter and Cu filter) and reconstructed with FBP, hybrid-type IR and deep learning reconstruction (DLR) for radiation dose reduction for lung nodule detection using a chest phantom study. MATERIALS AND METHODS: A chest CT phantom was scanned with a 320-detector row CT with Ag filter at 0.6, 1.6 and 2.5 mGy and Cu filters at 0.6, 1.6, 2.5 and 9.6 mGy, and reconstructed with the aforementioned methods. To compare image quality of all the CT data, SNRs and CNRs for any nodule were calculated for all protocols. To compare nodule detection capability among all protocols, the probability of detection of any nodule was assessed with a 5-point visual scoring system. Then, ROC analyses were performed to compare nodule detection capability of Ag and Cu filters for each radiation dose data with the same method and of the three methods for any radiation dose data and obtained with either filter. RESULTS: At any of the doses, SNR, CNR and area under the curve for the Ag filter were significantly higher or larger than those for the Cu filter (p < 0.05). Moreover, with DLR, those values were significantly higher or larger than all the others for CTs obtained with any of the radiation doses and either filter (p < 0.05). CONCLUSION: The Ag filter and DLR can significantly improve image quality and nodule detection capability compared with the Cu filter and other reconstruction methods at each of radiation doses used.


Subject(s)
Copper , Silver , Humans , X-Rays , Drug Tapering , Radiation Dosage , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms
6.
Jpn J Radiol ; 41(12): 1373-1388, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37498483

ABSTRACT

PURPOSE: Deep learning reconstruction (DLR) has been introduced by major vendors, tested for CT examinations of a variety of organs, and compared with other reconstruction methods. The purpose of this study was to compare the capabilities of DLR for image quality improvement and lung texture evaluation with those of hybrid-type iterative reconstruction (IR) for standard-, reduced- and ultra-low-dose CTs (SDCT, RDCT and ULDCT) obtained with high-definition CT (HDCT) and reconstructed at 0.25-mm, 0.5-mm and 1-mm section thicknesses with 512 × 512 or 1024 × 1024 matrixes for patients with various pulmonary diseases. MATERIALS AND METHODS: Forty age-, gender- and body mass index-matched patients with various pulmonary diseases underwent SDCT (CT dose index volume : mean ± standard deviation, 9.0 ± 1.8 mGy), RDCT (CTDIvol: 1.7 ± 0.2 mGy) and ULDCT (CTDIvol: 0.8 ± 0.1 mGy) at a HDCT. All CT data set were then reconstructed with 512 × 512 or 1024 × 1024 matrixes by means of hybrid-type IR and DLR. SNR of lung parenchyma and probabilities of all lung textures were assessed for each CT data set. SNR and detection performance of each lung texture reconstructed with DLR and hybrid-type IR were then compared by means of paired t tests and ROC analyses for all CT data at each section thickness. RESULTS: Data for each radiation dose showed DLR attained significantly higher SNR than hybrid-type IR for each of the CT data (p < 0.0001). On assessments of all findings except consolidation and nodules or masses, areas under the curve (AUCs) for ULDCT with hybrid-type IR for each section thickness (0.91 ≤ AUC ≤ 0.97) were significantly smaller than those with DLR (0.97 ≤ AUC ≤ 1, p < 0.05) and the standard protocol (0.98 ≤ AUC ≤ 1, p < 0.05). CONCLUSION: DLR is potentially more effective for image quality improvement and lung texture evaluation than hybrid-type IR on all radiation dose CTs obtained at HDCT and reconstructed with each section thickness with both matrixes for patients with a variety of pulmonary diseases.


Subject(s)
Deep Learning , Lung Diseases , Humans , Radiation Dosage , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Lung Diseases/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms
7.
Diagnostics (Basel) ; 13(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37443688

ABSTRACT

Dual-energy computed tomography (DECT) can improve the differentiation of material by using two different X-ray energy spectra, and may provide new imaging techniques to diagnostic radiology to overcome the limitations of conventional CT in characterizing tissue. Some techniques have used dual-energy imaging, which mainly includes dual-sourced, rapid kVp switching, dual-layer detectors, and split-filter imaging. In iodine images, images of the lung's perfused blood volume (PBV) based on DECT have been applied in patients with pulmonary embolism to obtain both images of the PE occluding the pulmonary artery and the consequent perfusion defects in the lung's parenchyma. PBV images of the lung also have the potential to indicate the severity of PE, including chronic thromboembolic pulmonary hypertension. Virtual monochromatic imaging can improve the accuracy of diagnosing pulmonary vascular diseases by optimizing kiloelectronvolt settings for various purposes. Iodine images also could provide a new approach in the area of thoracic oncology, for example, for the characterization of pulmonary nodules and mediastinal lymph nodes. DECT-based lung ventilation imaging is also available with noble gases with high atomic numbers, such as xenon, which is similar to iodine. A ventilation map of the lung can be used to image various pulmonary diseases such as chronic obstructive pulmonary disease.

8.
J Magn Reson Imaging ; 57(1): 259-272, 2023 01.
Article in English | MEDLINE | ID: mdl-35753082

ABSTRACT

BACKGROUND: Computed diffusion-weighted imaging (cDWI) is a mathematical computation technique that generates DWIs for any b-value by using actual DWI (aDWI) data with at least two different b-values and may improve differentiation of metastatic from nonmetastatic lymph nodes. PURPOSE: To determine the appropriate b-value for cDWI to achieve a better diagnostic capability for lymph node staging (N-staging) in non-small cell lung cancer (NSCLC) patients compared to aDWI, short inversion time (TI) inversion recovery (STIR) imaging, or positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-d-glucose combined with computed tomography (FDG-PET/CT). STUDY TYPE: Prospective. SUBJECTS: A total of 245 (127 males and 118 females; mean age 72 years) consecutive histopathologically confirmed NSCLC patients. FIELD STRENGTH/SEQUENCE: A 3 T, half-Fourier single-shot turbo spin-echo sequence, electrocardiogram (ECG)-triggered STIR fast advanced spin-echo (FASE) sequence with black blood and STIR acquisition and DWI obtained by FASE with b-values of 0 and 1000 sec/mm2 . ASSESSMENT: From aDWIs with b-values of 0 and 1000 (aDWI1000 ) sec/mm2 , cDWI using 400 (cDWI400 ), 600 (cDWI600 ), 800 (cDWI800 ), and 2000 (cDWI2000 ) sec/mm2 were generated. Then, 114 metastatic and 114 nonmetastatic nodes (mediastinal and hilar lymph nodes) were selected and evaluated with a contrast ratio (CR) for each cDWI and aDWI, apparent diffusion coefficient (ADC), lymph node-to-muscle ratio (LMR) on STIR, and maximum standard uptake value (SUVmax ). STATISTICAL TESTS: Receiver operating characteristic curve (ROC) analysis, Youden index, and McNemar's test. RESULTS: Area under the curve (AUC) of CR600 was significantly larger than the CR400 , CR800 , CR2000 , aCR1000 , and SUVmax . Comparison of N-staging accuracy showed that CR600 was significantly higher than CR400 , CR2000 , ADC, aCR1000 , and SUVmax , although there were no significant differences with CR800 (P = 0.99) and LMR (P = 0.99). DATA CONCLUSION: cDWI with b-value at 600 sec/mm2 may have potential to improve N-staging accuracy as compared with aDWI, STIR, and PET/CT. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Male , Female , Humans , Aged , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Positron Emission Tomography Computed Tomography , Prospective Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Positron-Emission Tomography/methods , Diffusion Magnetic Resonance Imaging/methods , Deoxyglucose , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Neoplasm Staging
9.
Eur Radiol ; 33(1): 368-379, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35841417

ABSTRACT

OBJECTIVE: Ultra-high-resolution CT (UHR-CT), which can be applied normal resolution (NR), high-resolution (HR), and super-high-resolution (SHR) modes, has become available as in conjunction with multi-detector CT (MDCT). Moreover, deep learning reconstruction (DLR) method, as well as filtered back projection (FBP), hybrid-type iterative reconstruction (IR), and model-based IR methods, has been clinically used. The purpose of this study was to directly compare lung CT number and airway dimension evaluation capabilities of UHR-CT using different scan modes with those of MDCT with different reconstruction methods as investigated in a lung density and airway phantom design recommended by QIBA. MATERIALS AND METHODS: Lung CT number, inner diameter (ID), inner area (IA), and wall thickness (WT) were measured, and mean differences between measured CT number, ID, IA, WT, and standard reference were compared by means of Tukey's HSD test between all UHR-CT data and MDCT reconstructed with FBP as 1.0-mm section thickness. RESULTS: For each reconstruction method, mean differences in lung CT numbers and all airway parameters on 0.5-mm and 1-mm section thickness CTs obtained with SHR and HR modes showed significant differences with those obtained with the NR mode on UHR-CT and MDCT (p < 0.05). Moreover, the mean differences on all UHR-CTs obtained with SHR, HR, or NR modes were significantly different from those of 1.0-mm section thickness MDCTs reconstructed with FBP (p < 0.05). CONCLUSION: Scan modes and reconstruction methods used for UHR-CT were found to significantly affect lung CT number and airway dimension evaluations as did reconstruction methods used for MDCT. KEY POINTS: • Scan and reconstruction methods used for UHR-CT showed significantly higher CT numbers and smaller airway dimension evaluations as did those for MDCT in a QIBA phantom study (p < 0.05). • Mean differences in lung CT number for 0.25-mm, 0.5-mm, and 1.0-mm section thickness CT images obtained with SHR and HR modes were significantly larger than those for CT images at 1.0-mm section thickness obtained with MDCT and reconstructed with FBP (p < 0.05). • Mean differences in inner diameter (ID), inner area (IA), and wall thickness (WT) measured with SHR and HR modes on 0.5- and 1.0-mm section thickness CT images were significantly smaller than those obtained with NR mode on UHR-CT and MDCT (p < 0.05).


Subject(s)
Deep Learning , Humans , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Thorax , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms
10.
Radiology ; 302(3): 697-706, 2022 03.
Article in English | MEDLINE | ID: mdl-34846203

ABSTRACT

Background Pulmonary MRI with ultrashort echo time (UTE) has been compared with chest CT for nodule detection and classification. However, direct comparisons of these methods' capabilities for Lung CT Screening Reporting and Data System (Lung-RADS) evaluation remain lacking. Purpose To compare the capabilities of pulmonary MRI with UTE with those of standard- or low-dose thin-section CT for Lung-RADS classification. Materials and Methods In this prospective study, standard- and low-dose chest CT (270 mA and 60 mA, respectively) and MRI with UTE were used to examine consecutive participants enrolled between January 2017 and December 2020 who met American College of Radiology Appropriateness Criteria for lung cancer screening with low-dose CT. Probability of nodule presence was assessed for all methods with a five-point visual scoring system by two board-certified radiologists. All nodules were then evaluated in terms of their Lung-RADS classification using each method. To compare nodule detection capability of the three methods, consensus for performances was rated by using jackknife free-response receiver operating characteristic analysis, and sensitivity was compared by means of the McNemar test. In addition, weighted κ statistics were used to determine the agreement between Lung-RADS classification obtained with each method and the reference standard generated from standard-dose CT evaluated by two radiologists who were not included in the image analysis session. Results A total of 205 participants (mean age: 64 years ± 7 [standard deviation], 106 men) with 1073 nodules were enrolled. Figure of merit (FOM) (P < .001) had significant differences among three modalities (standard-dose CT: FOM = 0.91, low-dose CT: FOM = 0.89, pulmonary MRI with UTE: FOM = 0.94), with no evidence of false-positive findings in participants with all modalities (P > .05). Agreements for Lung-RADS classification between all modalities and the reference standard were almost perfect (standard-dose CT: κ = 0.82, P < .001; low-dose CT: κ = 0.82, P < .001; pulmonary MRI with UTE: κ = 0.82, P < .001). Conclusion In a lung cancer screening population, ultrashort echo time pulmonary MRI was comparable to standard- or low-dose CT for Lung CT Screening Reporting and Data System classification. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wielpütz in this issue.


Subject(s)
Lung Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Multiple Pulmonary Nodules/diagnostic imaging , Tomography, X-Ray Computed/methods , Early Detection of Cancer , Female , Humans , Male , Middle Aged , Prospective Studies
11.
Acta Radiol ; 63(10): 1363-1373, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34636644

ABSTRACT

BACKGROUND: The need for quantitative assessment of interstitial lung involvement on thin-section computed tomography (CT) has arisen in interstitial lung diseases including connective tissue disease (CTD). PURPOSE: To evaluate the capability of machine learning (ML)-based CT texture analysis for disease severity and treatment response assessments in comparison with qualitatively assessed thin-section CT for patients with CTD. MATERIAL AND METHODS: A total of 149 patients with CTD-related ILD (CTD-ILD) underwent initial and follow-up CT scans (total 364 paired serial CT examinations), pulmonary function tests, and serum KL-6 level tests. Based on all follow-up examination results, all paired serial CT examinations were assessed as "Stable" (n = 188), "Worse" (n = 98) and "Improved" (n = 78). Next, quantitative index changes were determined by software, and qualitative disease severity scores were assessed by consensus of two radiologists. To evaluate differences in each quantitative index as well as in disease severity score between paired serial CT examinations, Tukey's honestly significant difference (HSD) test was performed among the three statuses. Stepwise regression analyses were performed to determine changes in each pulmonary functional parameter and all quantitative indexes between paired serial CT scans. RESULTS: Δ% normal lung, Δ% consolidation, Δ% ground glass opacity, Δ% reticulation, and Δdisease severity score showed significant differences among the three statuses (P < 0.05). All differences in pulmonary functional parameters were significantly affected by Δ% normal lung, Δ% reticulation, and Δ% honeycomb (0.16 ≤r2 ≤0.42; P < 0.05). CONCLUSION: ML-based CT texture analysis has better potential than qualitatively assessed thin-section CT for disease severity assessment and treatment response evaluation for CTD-ILD.


Subject(s)
Connective Tissue Diseases , Lung Diseases, Interstitial , Connective Tissue Diseases/diagnosis , Connective Tissue Diseases/drug therapy , Humans , Lung/diagnostic imaging , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/therapy , Machine Learning , Severity of Illness Index , Tomography, X-Ray Computed/methods
12.
AJR Am J Roentgenol ; 218(5): 899-908, 2022 05.
Article in English | MEDLINE | ID: mdl-34877872

ABSTRACT

BACKGROUND. Whole-body MRI and FDG PET/MRI have shown encouraging results for staging of thoracic malignancy but are poorly studied for staging of small cell lung cancer (SCLC). OBJECTIVE. The purpose of our study was to compare the performance of conventional staging tests, FDG PET/CT, whole-body MRI, and FDG PET/MRI for staging of SCLC. METHODS. This prospective study included 98 patients (64 men, 34 women; median age, 74 years) with SCLC who underwent conventional staging tests (brain MRI; neck, chest, and abdominopelvic CT; and bone scintigraphy), FDG PET/CT, and whole-body MRI within 2 weeks before treatment; coregistered FDG PET/MRI was generated. Two nuclear medicine physicians independently reviewed conventional tests and FDG PET/CT examinations in separate sessions, and two chest radiologists independently reviewed whole-body MRI and FDG PET/MRI examinations in separate sessions. Readers assessed T, N, and M categories; TNM stage; and Veterans Administration Lung Cancer Study Group (VALSG) stage. Reader pairs subsequently reached consensus. Stages determined clinically during tumor board sessions served as the reference standard. RESULTS. Accuracy for T category was higher (p < .05) for whole-body MRI (94.9%) and FDG PET/MRI (94.9%) than for FDG PET/CT (85.7%). Accuracy for N category was higher (p < .05) for whole-body MRI (84.7%), FDG PET/MRI (83.7%), and FDG PET/CT (81.6%) than for conventional staging tests (75.5%). Accuracy for M category was higher (p < .05) for whole-body MRI (94.9%), FDG PET/MRI (94.9%), and FDG PET/CT (94.9%) than for conventional staging tests (84.7%). Accuracy for TNM stage was higher (p < .05) for whole-body MRI (88.8%) and FDG PET/MRI (86.7%) than for FDG PET/CT (77.6%) and conventional staging tests (72.4%). Accuracy for VALSG stage was higher (p < .05) for whole-body MRI (95.9%), FDG PET/MRI (95.9%), and FDG PET/CT (98.0%) than for conventional staging tests (82.7%). Interobserver agreement, expressed as kappa coefficients, ranged from 0.81 to 0.94 across imaging tests and staging endpoints. CONCLUSION. FDG PET/CT, whole-body MRI, and coregistered FDG PET/MRI outperformed conventional tests for various staging endpoints in patients with SCLC. Whole-body MRI and FDG PET/MRI outperformed FDG PET/CT for T category and thus TNM stage, indicating the utility of MRI for assessing extent of local invasion in SCLC. CLINICAL IMPACT. Incorporation of either MRI approach may improve initial staging evaluation in SCLC.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Aged , Female , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Magnetic Resonance Imaging/methods , Male , Neoplasm Staging , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Prospective Studies , Radiopharmaceuticals , Small Cell Lung Carcinoma/diagnostic imaging , Small Cell Lung Carcinoma/pathology , Whole Body Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...