Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Oncol ; 14: 1323313, 2024.
Article in English | MEDLINE | ID: mdl-38380364

ABSTRACT

Background: Although the incidence of anaplastic thyroid carcinoma (ATC) is low (2.5% of thyroid cancer cases), this cancer has a very poor prognosis (survival rates < 5 months) and accounts for 14-39% of deaths. Conventional therapies based on surgery in combination with radiotherapy or chemotherapy showed limited effectiveness primarily due to the robust and protective DNA damage response in thyroid cancer cells. Methods: We used single-cell transcriptomic data from patients with different subtypes of thyroid cancer to study expression of genes involved in homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Then, we investigated the mechanisms of DNA damage and repair in anaplastic (C643 and Hth74) and papillary (TPC-1) thyroid cancer cell lines. The effect of caffeine (inhibitor of ATM and ATR) and UCN-01 (CHK1 inhibitor) was evaluated in cell cycle progression of thyroid cancer cells after γ-radiation or doxorubicin treatment. The DNA damage response was monitored after staining of phosphorylated γ-H2AX and 53BP1. Reporter plasmids were used to determine the efficacy of double-strand DNA breaks (DSBs) repair by HR and NHEJ in thyroid cancer cells. We evaluated the combination of selective inhibition of the DNA ligase IV by SCR7 and doxorubicin on cellular apoptosis and tumor growth in xenograft murine models of anaplastic thyroid cancer. Results: Single-cell RNA-Seq showed that NHEJ- and HR-related genes are expressed in ATC and PTC patients. We showed that ATC cells undergo mitosis in the presence of unrepaired DNA damage caused by γ-radiation and doxorubicin treatment. To proliferate and survive, these cells efficiently repair DNA lesions using homologous recombination (HR) and non-homologous end joining (NHEJ). The combination of SCR7 with doxorubicin, significantly increased apoptosis and impaired ATC tumor growth in a xenograft mouse model compared to doxorubicin monotherapy. Conclusion: This study shows the therapeutic value of the combination of a DNA ligase IV inhibitor and DNA-damaging agents (doxorubicin and/or γ-radiation) for the treatment of anaplastic thyroid cancer.

2.
Proc Natl Acad Sci U S A ; 120(31): e2216127120, 2023 08.
Article in English | MEDLINE | ID: mdl-37487091

ABSTRACT

Retroviruses and their host have coevolved in a delicate balance between viral replication and survival of the infected cell. In this equilibrium, restriction factors expressed by infected cells control different steps of retroviral replication such as entry, uncoating, nuclear import, expression, or budding. Here, we describe a mechanism of restriction against human T cell leukemia virus type 1 (HTLV-1) by the helicase-like transcription factor (HLTF). We show that RNA and protein levels of HLTF are reduced in primary T cells of HTLV-1-infected subjects, suggesting a clinical relevance. We further demonstrate that the viral oncogene Tax represses HLTF transcription via the Enhancer of zeste homolog 2 methyltransferase of the Polycomb repressive complex 2. The Tax protein also directly interacts with HLTF and induces its proteasomal degradation. RNA interference and gene transduction in HTLV-1-infected T cells derived from patients indicate that HLTF is a restriction factor. Restoring the normal levels of HLTF expression induces the dispersal of the Golgi apparatus and overproduction of secretory granules. By synergizing with Tax-mediated NF-κB activation, physiologically relevant levels of HLTF intensify the autophagic flux. Increased vesicular trafficking leads to an enlargement of the lysosomes and the production of large vacuoles containing viral particles. HLTF induction in HTLV-1-infected cells significantly increases the percentage of defective virions. In conclusion, HLTF-mediated activation of the autophagic flux blunts the infectious replication cycle of HTLV-1, revealing an original mode of viral restriction.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia, T-Cell , Humans , Human T-lymphotropic virus 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Products, tax/genetics , Gene Products, tax/metabolism , T-Lymphocytes/metabolism , NF-kappa B/metabolism , DNA-Binding Proteins
3.
Front Immunol ; 14: 1148798, 2023.
Article in English | MEDLINE | ID: mdl-37026006

ABSTRACT

Background: Only a fraction of patients with malignant pleural mesothelioma (MPM) will respond to chemo- or immunotherapy. For the majority, the condition will irremediably relapse after 13 to 18 months. In this study, we hypothesized that patients' outcome could be correlated to their immune cell profile. Focus was given to peripheral blood eosinophils that, paradoxically, can both promote or inhibit tumor growth depending on the cancer type. Methods: The characteristics of 242 patients with histologically proven MPM were retrospectively collected in three centers. Characteristics included overall survival (OS), progression-free survival (PFS), overall response rate (ORR) and disease control rate (DCR). The mean absolute eosinophil counts (AEC) were determined by averaging AEC data sets of the last month preceding the administration of chemo- or immunotherapy. Results: An optimal cutoff of 220 eosinophils/µL of blood segregated the cohort into two groups with significantly different median OS after chemotherapy (14 and 29 months above and below the threshold, p = 0.0001). The corresponding two-year OS rates were 28% and 55% in the AEC ≥ 220/µL and AEC < 220/µL groups, respectively. Based on shorter median PFS (8 vs 17 months, p < 0.0001) and reduced DCR (55.9% vs 35.2% at 6 months), the response to standard chemotherapy was significantly affected in the AEC ≥ 220/µL subset. Similar conclusions were also drawn from data sets of patients receiving immune checkpoint-based immunotherapy. Conclusion: In conclusion, baseline AEC ≥ 220/µL preceding therapy is associated with worse outcome and quicker relapse in MPM.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Mesothelioma, Malignant/drug therapy , Eosinophils/metabolism , Retrospective Studies , Pemetrexed , Pleural Neoplasms/drug therapy , Glutamates/therapeutic use , Guanine/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Mesothelioma/drug therapy , Prognosis
4.
Cancers (Basel) ; 14(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35565292

ABSTRACT

The composition of the tumor microenvironment (TME) mediates the outcome of chemo- and immunotherapies in malignant pleural mesothelioma (MPM). Tumor-associated macrophages (TAMs) and monocyte myeloid-derived immunosuppressive cells (M-MDSCs) constitute a major fraction of the TME. As central cells of the innate immune system, monocytes exert well-characterized functions of phagocytosis, cytokine production, and antibody-dependent cell-mediated cytotoxicity (ADCC). The objective of this study was to evaluate the ability of monocytes to exert a direct cytotoxicity by cell-to-cell contact with MPM cells. The experimental model is based on cocultures between human blood-derived monocytes sorted by negative selection and mesothelioma cell lines. Data show (i) that blood-derived human monocytes induce tumor cell death by direct cell-to-cell contact, (ii) that VPA is a pharmacological enhancer of this cytotoxic activity, (iii) that VPA increases monocyte migration and their aggregation with MPM cells, and (iv) that the molecular mechanisms behind VPA modulation of monocytes involve a downregulation of the membrane receptors associated with the M2 phenotype, i.e., CD163, CD206, and CD209. These conclusions, thus, broaden our understanding about the molecular mechanisms involved in immunosurveillance of the tumor microenvironment and open new prospects for further improvement of still unsatisfactory MPM therapies.

5.
Blood Adv ; 6(2): 672-678, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34714910

ABSTRACT

Bone marrow (BM) mesenchymal stromal cells (MSCs) are abnormal in multiple myeloma (MM) and play a critical role by promoting growth, survival, and drug resistance of MM cells. We observed higher Toll-like receptor 4 (TLR4) gene expression in MM MSCs than in MSCs from healthy donors. At the clinical level, we highlighted that TLR4 expression in MM MSCs evolves in parallel with the disease stage. Thus, we reasoned that the TLR4 axis is pivotal in MM by increasing the protumor activity of MSCs. Challenging primary MSCs with TLR4 agonists increased the expression of CD54 and interleukin-6 (IL-6), 2 factors directly implicated in MM MSC-MM cell crosstalk. Then, we evaluated the therapeutic efficacy of a TLR4 antagonist combined or not with conventional treatment in vitro with MSC-MM cell coculture and in vivo with the Vk*MYC mouse model. Selective inhibition of TLR4 specifically reduced the MM MSC ability to support the growth of MM cells in an IL-6-dependent manner and delayed the development of MM in the Vk*MYC mouse model by altering the early disease phase in vivo. For the first time, we demonstrate that specific targeting of the pathological BM microenvironment via TLR4 signaling could be an innovative approach to alter MM pathology development.


Subject(s)
Mesenchymal Stem Cells , Multiple Myeloma , Animals , Cells, Cultured , Interleukin-6 , Mesenchymal Stem Cells/metabolism , Mice , Multiple Myeloma/metabolism , Toll-Like Receptor 4/genetics , Tumor Microenvironment
6.
Cancers (Basel) ; 13(13)2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34199066

ABSTRACT

Immunotherapy based on two checkpoint inhibitors (ICI), programmed cell death 1 (PD-1, Nivolumab) and cytotoxic T-lymphocyte 4 (CTLA-4, Ipilimumab), has provided a significant improvement in overall survival for malignant mesothelioma (MM). Despite this major breakthrough, the median overall survival of patients treated with the two ICIs only reached 18.1 months vs. 14 months in standard chemotherapy. With an objective response rate of 40%, only a subset of patients benefits from immunotherapy. A critical step in the success of immunotherapy is the presentation of tumor-derived peptides by the major histocompatibility complex I (MHC-I) of tumor cells. These neoantigens are potentially immunogenic and trigger immune responses orchestrated by cytotoxic cells. In MM, tumor development is nevertheless characterized by a low mutation rate despite major structural chromosomal rearrangements driving oncogenesis (BAP1, NF2, CDKN2AB). In this opinion, we propose to investigate an approach based on the mechanisms of the DNA damage tolerance (DDT) pathways to increase the frequency of non-synonymous mutations. The idea is to transiently activate the error-prone DDT in order to generate neoantigens while preserving a fully competent antitumor immune response.

7.
Retrovirology ; 16(1): 26, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31590667

ABSTRACT

Vaccination against retroviruses is a challenge because of their ability to stably integrate into the host genome, undergo long-term latency in a proportion of infected cells and thereby escape immune response. Since clearance of the virus is almost impossible once infection is established, the primary goal is to achieve sterilizing immunity. Besides efficacy, safety is the major issue since vaccination has been associated with increased infection or reversion to pathogenicity. In this review, we discuss the different issues that we faced during the development of an efficient vaccine against bovine leukemia virus (BLV). We summarize the historical failures of inactivated vaccines, the efficacy and safety of a live-attenuated vaccine and the economical constraints of further industrial development.


Subject(s)
Enzootic Bovine Leukosis/prevention & control , Leukemia Virus, Bovine/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , Cattle , Vaccination/veterinary , Vaccines, Attenuated/immunology
8.
JCI Insight ; 4(18)2019 09 19.
Article in English | MEDLINE | ID: mdl-31534051

ABSTRACT

The roles of macrophages in orchestrating innate immunity through phagocytosis and T lymphocyte activation have been extensively investigated. Much less understood is the unexpected role of macrophages in direct tumor regression. Tumoricidal macrophages can indeed manifest cancer immunoediting activity in the absence of adaptive immunity. We investigated direct macrophage cytotoxicity in malignant pleural mesothelioma, a lethal cancer that develops from mesothelial cells of the pleural cavity after occupational asbestos exposure. In particular, we analyzed the cytotoxic activity of mouse RAW264.7 macrophages upon cell-cell contact with autologous AB1/AB12 mesothelioma cells. We show that macrophages killed mesothelioma cells by oxeiptosis via a mechanism involving enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27-specific (H3K27-specific) methyltransferase of the polycomb repressive complex 2 (PRC2). A selective inhibitor of EZH2 indeed impaired RAW264.7-directed cytotoxicity and concomitantly stimulated the PD-1 immune checkpoint. In the immunocompetent BALB/c model, RAW264.7 macrophages pretreated with the EZH2 inhibitor failed to control tumor growth of AB1 and AB12 mesothelioma cells. Blockade of PD-1 engagement restored macrophage-dependent antitumor activity. We conclude that macrophages can be directly cytotoxic for mesothelioma cells independent of phagocytosis. Inhibition of the PRC2 EZH2 methyltransferase reduces this activity because of PD-1 overexpression. Combination of PD-1 blockade and EZH2 inhibition restores macrophage cytotoxicity.


Subject(s)
Cell Communication/immunology , Enhancer of Zeste Homolog 2 Protein/metabolism , Lung Neoplasms/immunology , Macrophages/immunology , Mesothelioma/immunology , Programmed Cell Death 1 Receptor/immunology , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Cell Culture Techniques , Cell Line, Tumor/transplantation , Coculture Techniques , Disease Models, Animal , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/immunology , Humans , Immunogenic Cell Death/drug effects , Immunogenic Cell Death/genetics , Lung Neoplasms/therapy , Macrophages/metabolism , Macrophages/transplantation , Male , Mesothelioma/therapy , Mesothelioma, Malignant , Mice , Peroxynitrous Acid/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , RAW 264.7 Cells/transplantation , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism
9.
Curr Opin Virol ; 26: 15-19, 2017 10.
Article in English | MEDLINE | ID: mdl-28753440

ABSTRACT

The bovine leukemia virus (BLV) is a retrovirus inducing an asymptomatic and persistent infection in ruminants and leading in a minority of cases to the accumulation of B-lymphocytes (lymphocytosis, leukemia or lymphoma). Although the mechanisms of oncogenesis are still largely unknown, there is clear experimental evidence showing that BLV infection drastically modifies the pattern of gene expression of the host cell. This alteration of the transcriptome in infected B-lymphocytes results first, from a direct activity of viral proteins (i.e. transactivation of gene promoters, protein-protein interactions), second, from insertional mutagenesis by proviral integration (cis-activation) and third, from gene silencing by microRNAs. Expression of viral proteins stimulates a vigorous immune response that indirectly modifies gene transcription in other cell types (e.g. cytotoxic T-cells, auxiliary T-cells, macrophages). In principle, insertional mutagenesis and microRNA-associated RNA interference can modify the cell fate without inducing an antiviral immunity. Despite a tight control by the immune response, the permanent attempts of the virus to replicate ultimately induce mutations in the infected cell. Accumulation of these genomic lesions and Darwinian selection of tumor clones are predicted to lead to cancer.


Subject(s)
B-Lymphocytes/virology , Carcinogenesis , Host-Pathogen Interactions , Leukemia Virus, Bovine/pathogenicity , Animals , Cattle , Gene Expression Regulation , Mutagenesis, Insertional , Transcription, Genetic , Virus Integration
10.
Front Microbiol ; 8: 2684, 2017.
Article in English | MEDLINE | ID: mdl-29379479

ABSTRACT

In 1987, Mitsuaki Yoshida proposed the following model (Yoshida and Seiki, 1987): "... T-cells activated through the endogenous p40x would express viral antigens including the envelope glycoproteins which are exposed on the cell surface. These glycoproteins are targets of host immune surveillance, as is evidenced by the cytotoxic effects of anti-envelope antibodies or patient sera. Eventually all cells expressing the viral antigens, that is, all cells driven by the p40x would be rejected by the host. Only those cells that did not express the viral antigens would survive. Later, these antigen-negative infected cells would begin again to express viral antigens, including p40x, thus entering into the second cycle of cell propagation. These cycles would be repeated in so-called healthy virus carriers for 20 or 30 years or longer...." Three decades later, accumulated experimental facts particularly on intermittent viral transcription and regulation by the host immune response appear to prove that Yoshida was right. This Hypothesis and Theory summarizes the evidences that support this paradigm.

11.
PLoS Pathog ; 12(4): e1005588, 2016 04.
Article in English | MEDLINE | ID: mdl-27123579

ABSTRACT

Retroviruses are not expected to encode miRNAs because of the potential problem of self-cleavage of their genomic RNAs. This assumption has recently been challenged by experiments showing that bovine leukemia virus (BLV) encodes miRNAs from intragenomic Pol III promoters. The BLV miRNAs are abundantly expressed in B-cell tumors in the absence of significant levels of genomic and subgenomic viral RNAs. Using deep RNA sequencing and functional reporter assays, we show that miRNAs mediate the expression of genes involved in cell signaling, cancer and immunity. We further demonstrate that BLV miRNAs are essential to induce B-cell tumors in an experimental model and to promote efficient viral replication in the natural host.


Subject(s)
Carcinogenesis/genetics , Gene Expression Regulation, Viral/genetics , Leukemia Virus, Bovine/genetics , MicroRNAs/genetics , Virus Replication/genetics , Animals , Cattle , Cell Transformation, Neoplastic/genetics , Enzootic Bovine Leukosis , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction , RNA, Viral/genetics , Sheep
12.
Curr Top Med Chem ; 16(7): 777-87, 2016.
Article in English | MEDLINE | ID: mdl-26303419

ABSTRACT

In the absence of a satisfactory treatment of malignant pleural mesothelioma (MPM), novel therapeutic strategies are urgently needed. Among these, immunotherapy offers a series of advantages such as tumor specificity and good tolerability. Unfortunately, MPM immunotherapy is frequently limited by incomplete cell differentiation or feedback loop regulatory mechanisms. In this review, we describe different components of the innate immune system and discuss strategies to improve MPM immunotherapy by using epigenetic modulators.


Subject(s)
Epigenesis, Genetic/drug effects , Immunotherapy/methods , Lung Neoplasms/therapy , Mesothelioma/drug therapy , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mesothelioma/genetics , Mesothelioma/pathology , Mesothelioma, Malignant
13.
Viruses ; 7(11): 6080-8, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26610551

ABSTRACT

Different animal models have been proposed to investigate the mechanisms of Human T-lymphotropic Virus (HTLV)-induced pathogenesis: rats, transgenic and NOD-SCID/γcnull (NOG) mice, rabbits, squirrel monkeys, baboons and macaques. These systems indeed provide useful information but have intrinsic limitations such as lack of disease relevance, species specificity or inadequate immune response. Another strategy based on a comparative virology approach is to characterize a related pathogen and to speculate on possible shared mechanisms. In this perspective, bovine leukemia virus (BLV), another member of the deltaretrovirus genus, is evolutionary related to HTLV-1. BLV induces lymphoproliferative disorders in ruminants providing useful information on the mechanisms of viral persistence, genetic determinants of pathogenesis and potential novel therapies.


Subject(s)
Host-Pathogen Interactions , Human T-lymphotropic virus 1/physiology , Leukemia Virus, Bovine/physiology , Animals , Biomedical Research/trends , Disease Models, Animal , Human T-lymphotropic virus 1/pathogenicity , Humans , Leukemia Virus, Bovine/pathogenicity , Virology/trends
14.
Viruses ; 7(7): 3603-24, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26198240

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes cancer (Adult T cell Leukemia, ATL) and a spectrum of inflammatory diseases (mainly HTLV-associated myelopathy-tropical spastic paraparesis, HAM/TSP). Since virions are particularly unstable, HTLV-1 transmission primarily occurs by transfer of a cell carrying an integrated provirus. After transcription, the viral genomic RNA undergoes reverse transcription and integration into the chromosomal DNA of a cell from the newly infected host. The virus then replicates by either one of two modes: (i) an infectious cycle by virus budding and infection of new targets and (ii) mitotic division of cells harboring an integrated provirus. HTLV-1 replication initiates a series of mechanisms in the host including antiviral immunity and checkpoint control of cell proliferation. HTLV-1 has elaborated strategies to counteract these defense mechanisms allowing continuous persistence in humans.


Subject(s)
HTLV-I Infections/virology , Human T-lymphotropic virus 1/physiology , Animals , HTLV-I Infections/transmission , Human T-lymphotropic virus 1/genetics , Humans , Models, Biological , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...