Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 263: 115794, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37984295

ABSTRACT

The synthesis and evaluation of small-molecule inhibitors of tubulin polymerization remains a promising approach for the development of new therapeutic agents for cancer treatment. The natural products colchicine and combretastatin A-4 (CA4) inspired significant drug discovery campaigns targeting the colchicine site located on the beta-subunit of the tubulin heterodimer, but so far these efforts have not yielded an approved drug for cancer treatment in human patients. Interest in the colchicine site was enhanced by the discovery that a subset of colchicine site agents demonstrated dual functionality as both potent antiproliferative agents and effective vascular disrupting agents (VDAs). Our previous studies led to the discovery and development of a 2-aryl-3-aroyl-indole analogue (OXi8006) that inhibited tubulin polymerization and demonstrated low nM IC50 values against a variety of human cancer cell lines. A water-soluble phosphate prodrug salt (OXi8007), synthesized from OXi8006, displayed promising vascular disrupting activity in mouse models of cancer. To further extend structure-activity relationship correlations, a series of 6-aryl-3-aroyl-indole analogues was synthesized and evaluated for their inhibition of tubulin polymerization and cytotoxicity against human cancer cell lines. Several structurally diverse molecules in this small library were strong inhibitors of tubulin polymerization and of MCF-7 and MDA-MB-231 human breast cancer cells. One of the most promising analogues (KGP591) caused significant G2/M arrest of MDA-MB-231 cells, disrupted microtubule structure and cell morphology in MDA-MB-231 cells, and demonstrated significant inhibition of MDA-MB-231 cell migration in a wound healing (scratch) assay. A phosphate prodrug salt, KGP618, synthesized from its parent phenolic precursor, KGP591, demonstrated significant reduction in bioluminescence signal when evaluated in vivo against an orthotopic model of kidney cancer (RENCA-luc) in BALB/c mice, indicative of VDA efficacy. The most active compounds from this series offer promise as anticancer therapeutic agents.


Subject(s)
Antineoplastic Agents , Prodrugs , Mice , Animals , Humans , Tubulin/metabolism , Prodrugs/pharmacology , Polymerization , Apoptosis , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Colchicine/pharmacology , Tubulin Modulators/chemistry , Indoles/chemistry , Phosphates/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor
2.
Anal Sens ; 3(1)2023 Jan.
Article in English | MEDLINE | ID: mdl-37006671

ABSTRACT

Next generation chemiluminescent iridium 1,2-dioxetane complexes have been developed which consist of the Schaap's 1,2-dioxetane scaffold directly attached to the metal center. This was achieved by synthetically modifying the scaffold precursor with a phenylpyridine moiety, which can act as a ligand. Reaction of this scaffold ligand with the iridium dimer [Ir(BTP)2(µ-Cl)]2 (BTP = 2-(benzo[b]thiophen-2-yl)pyridine) yielded isomers which depict ligation through either the cyclometalating carbon or, interestingly, the sulfur atom of one BTP ligand. Their corresponding 1,2-dioxetanes display chemiluminescent responses in buffered solutions, exhibiting a single, red-shifted peak at 600 nm. This triplet emission was effectively quenched by oxygen, yielding in vitro Stern-Volmer constants of 0.1 and 0.009 mbar-1 for the carbon-bound and sulfur compound, respectively. Lastly, the sulfur-bound dioxetane was further utilized for oxygen sensing in muscle tissue of living mice and xenograft models of tumor hypoxia, depicting the ability of the probe chemiluminescence to penetrate biological tissue (total flux ~ 106 p/s).

3.
Tetrahedron Lett ; 1282023 Sep 19.
Article in English | MEDLINE | ID: mdl-38343394

ABSTRACT

A concise linear synthesis of hypoxia inducible factor-2α (HIF-2α) inhibitor, belzutifan was achieved by reproducing key components of previous synthetic approaches to this molecule as described in several publications and patents. Belzutifan is an orally bioavailable small-molecule (HIF-2α) inhibitor for the treatment of von Hippel-Lindau (VHL) disease-associated renal cell carcinoma (RCC) that received FDA approval in 2021. Herein, we report a 13-step synthesis of PT2977 that proceeded in good overall yield with high diastereoselectivity. Separation of diastereomeric mixtures at two different stages of the synthesis proved advantageous in ease of separation. The X-ray structure of belzutifan was determined.

4.
J Org Chem ; 82(23): 12920-12927, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29111730

ABSTRACT

A new one-pot approach to construct α-carbonyl bicyclic furans from easily accessible diynones is described. This reaction sequence proceeds via a Diels-Alder cycloaddition reaction catalyzed by dimethylaluminum chloride followed by a 5-exo-dig cyclization/oxidation reaction catalyzed by copper(II) chloride. This methodology generates α-carbonyl-functionalized dihydroisobenzofuran derivatives in good to excellent yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...