Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980987

ABSTRACT

Growing evidence supports the role of gut microbiota in chronic inflammation, insulin resistance (IR) and sex hormone production in polycystic ovary syndrome (PCOS). Adropin plays a pivotal role in the regulation of glucose and lipid metabolism and is negatively correlated with IR, which affects intestinal microbiota and sex hormones. However, the effect of adropin administration in PCOS has yet to be investigated. The present study aimed to assess the effects of adropin on letrozole (LTZ)-induced PCOS in rats and the potential underlying mechanisms. The experimental groups were normal, adropin, letrozole and LTZ + adropin. At the end of the experiment, adropin significantly ameliorated PCOS, as evidenced by restoring the normal ovarian structure, decreasing the theca cell thickness in antral follicles, as well as serum testosterone and luteinizing hormone levels and luteinizing hormone/follicle-stimulating hormone ratios, at the same time as increasing granulosa cell thickness in antral follicles, oestradiol and follicle-stimulating hormone levels. The ameliorating effect could be attributed to its effect on sex hormone-binding globulin, key steroidogenic genes STAR and CYP11A1, IR, lipid profile, gut microbiota metabolites-brain-ovary axis components (short chain fatty acids, free fatty acid receptor 3 and peptide YY), intestinal permeability marker (zonulin and tight junction protein claudin-1), lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B inflammatory pathway and oxidative stress makers (malondialdehyde and total antioxidant capacity). In conclusion, adropin has a promising therapeutic effect on PCOS by regulating steroidogenesis, IR, lipid profile, the gut microbiota inflammatory axis and redox homeostasis. KEY POINTS: Adropin treatment reversed endocrine and ovarian morphology disorders in polycystic ovary syndrome (PCOS). Adropin regulated the ovarian steroidogenesis and sex hormone-binding globulin in PCOS. Adropin improved lipid profile and decreased insulin resistance in PCOS. Adropin modulated the components of the gut-brain-ovary axis (short chain fatty acids, free fatty acid receptor 3 and peptide YY) in PCOS. Adropin improved intestinal barrier integrity, suppressed of lipopolysaccharides/Toll-like receptor 4/nuclear factor kappa B signalling pathway and oxidative stress in PCOS.

2.
Toxics ; 11(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37112608

ABSTRACT

Concerns regarding the possible hazards to human health have been raised by the growing usage of silica nanoparticles (SiNPs) in a variety of applications, including industrial, agricultural, and medical applications. This in vivo subchronic study was conducted to assess the following: (1) the toxicity of orally administered SiNPs on the liver, kidneys, and adrenal glands; (2) the relationship between SiNPs exposure and oxidative stress; and (3) the role of magnesium in mitigating these toxic effects. A total of 24 Sprague Dawley male adult rats were divided equally into four groups, as follows: control group, magnesium (Mg) group (50 mg/kg/d), SiNPs group (100 mg/kg/d), and SiNPs+ Mg group. Rats were treated with SiNPs by oral gavage for 90 days. The liver transaminases, serum creatinine, and cortisol levels were evaluated. The tissue malondialdehyde (MDA) and reduced glutathione (GSH) levels were measured. Additionally, the weight of the organs and the histopathological changes were examined. Our results demonstrated that SiNPs exposure caused increased weight in the kidneys and adrenal glands. Exposure to SiNPs was also associated with significant alterations in liver transaminases, serum creatinine, cortisol, MDA, and GSH. Additionally, histopathological changes were significantly reported in the liver, kidneys, and adrenal glands of SiNPs-treated rats. Notably, when we compared the control group with the treated groups with SiNPs and Mg, the results revealed that magnesium could mitigate SiNPs-induced biochemical and histopathologic changes, confirming its effective role as an antioxidant that reduced the accumulation of SiNPs in tissues, and that it returns the levels of liver transaminases, serum creatinine, cortisol, MDA, and GSH to almost normal values.

3.
J Toxicol ; 2022: 7760594, 2022.
Article in English | MEDLINE | ID: mdl-36601412

ABSTRACT

Bisphenol A (BPA) is an environmental toxin utilized for the production of polycarbonate plastics and epoxy resins. Due to BPA's extensive production and environmental contamination, human exposure is unavoidable. The effects of low-dose of BPA on various body tissues and organs remain controversial. Our study investigated the potential of BPA to induce biochemical, histopathological, and immunohistochemical changes in the coronary artery and myocardium and the potential protective role of L-carnitine (LC). 24 adult Wistar albino male rats were divided equally into a control group, a BPA-treated group (40 mg/kg/d, by gavage for 4 weeks), and a BPA plus LC-treated group (received 40 mg/kg/d of BPA and 300 mg/kg/d of LC, by gavage for 4 weeks). BPA-exposed rats demonstrated structural anomalies in the coronary artery tissue including vacuolation of cells in the media and detachment of the endothelium of the intima. Congestion of blood vessels and infiltration by polynuclear cells were observed in the myocardium. There was an enhanced collagen deposition in both tissues indicating fibrosis. Immunohistochemical changes included enhanced eNOS and caspase-3 expression in the coronary artery and myocardium indicating vascular disease and apoptosis, respectively. Oxidative damage was evident in the coronary artery and the myocardium of BPA-treated rats, which was indicated by the reduced level of glutathione (GSH) and elevated malondydehyde (MDA) levels. The coadministration of LC significantly improved BPA-induced structural alterations and oxidative stress. In conclusion, BPA could potentially cause pathologic changes and oxidative damage in the coronary artery and myocardium, which could be improved by LC coadministration.

SELECTION OF CITATIONS
SEARCH DETAIL
...