Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS J ; 25(2): 27, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36805860

ABSTRACT

Traditional vaccinations need to be injected with needles, and since some people have a strong aversion to needles, a needle-free alternative delivery system is important. In this study, we employed ionic liquids (ILs) for transcutaneous delivery of cancer antigen-derived peptides to obtain anticancer therapeutic effects in a needle-free manner. ILs successfully increased the in vitro skin permeability of a peptide from Wilms tumor 1 (WT1), one of the more promising cancer antigens, plus or minus an adjuvant, resiquimod (R848), a toll-like receptor 7 agonist. In vivo studies demonstrated that concomitant transcutaneous delivery of WT1 peptide and R848 by ILs induced WT1-specific cytotoxic T lymphocyte (CTL) in mice, resulting in tumor growth inhibition in Lewis lung carcinoma-bearing mice. Interestingly, administrating R848 in ILs before WT1 peptides in ILs increased tumor growth inhibition effects compared to co-administration of both. We found that the prior application of R848 increased the infiltration of leukocytes in the skin and that subsequent delivery of WT1 peptides was more likely to induce WT1-specific CTL. Furthermore, sequential immunization with IL-based formulations was applicable to different types of peptides and cancer models without induction of skin irritation. IL-based transcutaneous delivery of cancer antigen-derived peptides and adjuvants, either alone or together, could be a novel approach to needle-free cancer therapeutic vaccines.


Subject(s)
Cancer Vaccines , Ionic Liquids , Neoplasms , Animals , Mice , Vaccines, Subunit , Adjuvants, Immunologic , Disease Models, Animal
2.
Biochem Biophys Rep ; 26: 101009, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34027135

ABSTRACT

Anaplastic thyroid cancer (ATC) is one of the most lethal types of human tumors. Lenvatinib can improve the disease control and prognosis in patients with ATC. However, there is an unmet need to develop a therapeutically safer and non-invasive strategy that improves the efficacy of lenvatinib for advanced ATC tumors, which grow larger close to the skin. We previously demonstrated that the topical application of an ointment incorporating tumor suppressive microRNA (TS-miR), miR-634, is a useful strategy as a TS-miR therapeutics. Here, we found that the overexpression of miR-634 synergistically increased lenvatinib-induced cytotoxicity by concurrently downregulating multiple genes related to cytoprotective processes, including ASCT2, a glutamine transporter, in ATC cell lines. Furthermore, the topical application of a miR-634 ointment on subcutaneous tumors effectively augmented the anti-tumor effects of lenvatinib in an ATC xenograft mouse model. Thus, we propose topical treatment of a miR-634 ointment as a rational strategy for improving lenvatinib-based therapy for ATC.

3.
Mol Ther Oncolytics ; 19: 294-307, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33294587

ABSTRACT

For cutaneous squamous cell carcinoma (cSCC), topical treatment is an essential option for patients who are not candidates for, or who refuse, surgery. Epidermal growth factor receptor (EGFR) plays a key role in the development of cSCC, but EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib, have shown only partial clinical benefit in this disease. Thus, there is an unmet need to develop novel strategies for improving the efficacy of TKIs in cSCC. We previously demonstrated that the tumor-suppressive microRNA (miRNA) miR-634 functions as a negative modulator of the cytoprotective cancer cell survival processes and is a useful anticancer therapeutic agent. In the present study, we found that topical application of an ointment containing miR-634 inhibited in vivo tumor growth without toxicity in a cSCC xenograft mouse model and a 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced papilloma mouse model. Functional validation revealed that miR-634 overexpression reduced glutaminolysis by directly targeting ASCT2, a glutamine transporter. Furthermore, overexpression of miR-634 synergistically enhanced TKI-induced cytotoxicity by triggering severe energetic stress in vitro and in vivo. Thus, we propose that topical treatment with miR-634 ointment is a useful strategy for improving for EGFR TKI-based therapy for cSCC.

4.
J Invest Dermatol ; 139(10): 2164-2173.e1, 2019 10.
Article in English | MEDLINE | ID: mdl-30978356

ABSTRACT

PD-L2 is a ligand for the immune checkpoint receptor PD-1; however, its regulatory function is unclear. We previously reported that silencing of CD86 in cutaneous dendritic cells by topical application of small interfering RNA (siRNA) inhibits the elicitation of contact hypersensitivity (CHS). Here, we investigated the effects of topical application of PD-L2 siRNA on allergic skin disease. PD-L2 was induced in dendritic cells concurrently with the elevation of major histocompatibility complex class II and CD86 expression. Topical application of PD-L2 siRNA inhibited the elicitation of CHS by suppressing early proinflammatory cytokine expression and migration of hapten-carrying dendritic cells into lymph nodes. Local injection of neutralizing anti-PD-L2 mAb inhibited CHS to the same extent. PD-L2 siRNA treatment inhibited CHS in PD-1/PD-L1 double knockout mice and in the sensitized T-cell-transferred skin. These results suggest that the effects of PD-L2 silencing are independent of PD-1 but dependent on local memory T cells. Most of the inhibitory effects of PD-L2 and CD86 silencing on CHS were comparable, but PD-L2 siRNA treatment did not inhibit atopic disease-like manifestations and T helper type 2 responses in NC/Nga mice. Our results suggest that PD-L2 in cutaneous dendritic cells acts as a costimulator rather than a regulator. Local PD-L2 silencing by topical application of siRNA represents a therapeutic approach for contact allergy.


Subject(s)
Dermatitis, Allergic Contact/drug therapy , Dermatitis, Allergic Contact/immunology , Haptens/pharmacology , Langerhans Cells/drug effects , Programmed Cell Death 1 Ligand 2 Protein/genetics , RNA, Small Interfering/pharmacology , Administration, Topical , Animals , Biopsy, Needle , Disease Models, Animal , Female , Flow Cytometry/methods , Gene Silencing/drug effects , Immunohistochemistry , Japan , Langerhans Cells/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Random Allocation , Reference Values , Risk Factors , Statistics, Nonparametric , Treatment Outcome
6.
Eur J Pharm Biopharm ; 102: 92-100, 2016 May.
Article in English | MEDLINE | ID: mdl-26945484

ABSTRACT

Poor transdermal penetration of active pharmaceutical ingredients (APIs) impairs both bioavailability and therapeutic benefits and is a major challenge in the development of transdermal drug delivery systems. Here, we transformed a poorly water-soluble drug, etodolac, into an ionic liquid in order to improve its hydrophobicity, hydrophilicity and skin permeability. The ionic liquid was prepared by mixing etodolac with lidocaine (1:1, mol/mol). Both the free drug and the transformed ionic liquid were characterized by differential scanning colorimetry (DSC), infrared spectroscopy (IR), and saturation concentration measurements. In addition, in vitro skin-permeation testing was carried out via an ionic liquid-containing patch (Etoreat patch). The lidocaine and etodolac in ionic liquid form led to a relatively lower melting point than either lidocaine or etodolac alone, and this improved the lipophilicity/hydrophilicity of etodolac. In vitro skin-permeation testing demonstrated that the Etoreat patch significantly increased the skin permeation of etodolac (9.3-fold) compared with an etodolac alone patch, although an Etoreat patch did not increase the skin permeation of lidocaine, which was consistent with the results when using a lidocaine alone patch. Lidocaine appeared to self-sacrificially improve the skin permeation of etodolac via its transformation into an ionic liquid. The data suggest that ionic liquids composed of approved drugs may substantially expand the formulation preparation method to meet the challenges of drugs which are characterized by poor rates of transdermal absorption.


Subject(s)
Etodolac/administration & dosage , Etodolac/chemistry , Ionic Liquids/chemistry , Lidocaine/administration & dosage , Lidocaine/chemistry , Skin/metabolism , Water/chemistry , Administration, Cutaneous , Animals , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Female , Hydrophobic and Hydrophilic Interactions , Ions/chemistry , Permeability , Skin Absorption , Solubility , Swine , Transdermal Patch
SELECTION OF CITATIONS
SEARCH DETAIL
...