Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vet World ; 16(3): 607-617, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37041824

ABSTRACT

Background and Aim: Biosecurity implementation is fundamental to combating diseases and antibiotic resistance. Therefore, this study aimed to examine the correlation between the implementation of biosecurity measures in small-scale duck farms and the incidence of infectious diseases that threaten the duck industry. Materials and Methods: Twenty small-scale duck farms of different breeds and production stages were collected as representative samples, focused on two districts in the Qalyoubia governorate, which possesses high-density small-scale farms. A 30-point structured questionnaire was designed to assess the level of biosecurity measures implemented in the sampled farms. These farms were examined for bacterial infection by cultivation, typing, and antibiotic sensitivity tests, in addition to molecular techniques for detecting suspected viral diseases. Results: The results showed that the farms had high or low levels of biosecurity; only 25% possessed high-level biosecurity. Bacteria, including Salmonella, Escherichia coli, Staphylococcus, and Pasteurella, were isolated from all sampled farms. High rates of antimicrobial resistance-reaching up to 100% were observed against some drugs. However, viral causative agents, including HPAI-H5N8, duck viral hepatitis, and goose parvovirus, were isolated from only five farms. Conclusion: The lack of commitment to biosecurity implementation, particularly personal hygiene, was observed in most sampled farms. Increasing the level of biosecurity reduced the incidence of mixed infections.

2.
Vet World ; 16(1): 1-11, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36855348

ABSTRACT

Background and Aim: Multidrug resistance (MDR) of Escherichia coli has become an increasing concern in poultry farming worldwide. However, E. coli can accumulate resistance genes through gene transfer. The most problematic resistance mechanism in E. coli is the acquisition of genes encoding broad-spectrum ß-lactamases, known as extended-spectrum ß-lactamases, that confer resistance to broad-spectrum cephalosporins. Plasmid-mediated quinolone resistance genes (conferring resistance to quinolones) and mcr-1 genes (conferring resistance to colistin) also contribute to antimicrobial resistance. This study aimed to investigate the prevalence of antimicrobial susceptibility and to detect ß-lactamase and colistin resistance genes of E. coli isolated from broiler farms in Egypt. Materials and Methods: Samples from 938 broiler farms were bacteriologically examined for E. coli isolation. The antimicrobial resistance profile was evaluated using disk diffusion, and several resistance genes were investigated through polymerase chain reaction amplification. Results: Escherichia coli was isolated and identified from 675/938 farms (72%) from the pooled internal organs (liver, heart, lung, spleen, and yolk) of broilers. Escherichia coli isolates from the most recent 3 years (2018-2020) were serotyped into 13 serotypes; the most prevalent serotype was O125 (n = 8). The highest phenotypic antibiotic resistance profiles during this period were against ampicillin, penicillin, tetracycline, and nalidixic acid. Escherichia coli was sensitive to clinically relevant antibiotics. Twenty-eight selected isolates from the most recent 3 years (2018-2020) were found to have MDR, where the prevalence of the antibiotic resistance genes ctx, tem, and shv was 46% and that of mcr-1 was 64%. Integrons were found in 93% of the isolates. Conclusion: The study showed a high prevalence of E. coli infection in broiler farms associated with MDR, which has a high public health significance because of its zoonotic relevance. These results strengthen the application of continuous surveillance programs.

3.
Vet World ; 13(6): 1037-1044, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32801552

ABSTRACT

AIM: Antimicrobial resistance is a global health threat. This study investigated the prevalence of Escherichia coli in imported 1-day-old chicks, ducklings, and turkey poults. MATERIALS AND METHODS: The liver, heart, lungs, and yolk sacs of 148 imported batches of 1-day-old flocks (chicks, 45; ducklings, 63; and turkey poults, 40) were bacteriologically examined for the presence of E. coli. RESULTS: We isolated 38 E. coli strains from 13.5%, 6.7%, and 5.4% of imported batches of 1-day-old chicks, ducklings, and turkey poults, respectively. They were serotyped as O91, O125, O145, O78, O44, O36, O169, O124, O15, O26, and untyped in the imported chicks; O91, O119, O145, O15, O169, and untyped in the imported ducklings; and O78, O28, O29, O168, O125, O158, and O115 in the imported turkey poults. The E. coli isolates were investigated for antibiotic resistance against 16 antibiotics using the disk diffusion method and were found resistant to cefotaxime (60.5%), nalidixic acid (44.7%), tetracycline (44.7%), and trimethoprim-sulfamethoxazole (42.1%). The distribution of extended-spectrum ß-lactamase (ESBL) and ampC ß-lactamase genes was bla TEM (52.6%), bla SHV (28.9%), bla CTX-M (39.5%), bla OXA-1 (13.1%), and ampC (28.9%). CONCLUSION: Imported 1-day-old poultry flocks may be a potential source for the dissemination of antibiotic-resistant E. coli and the ESBL genes in poultry production.

4.
Vet J ; 211: 100-3, 2016 May.
Article in English | MEDLINE | ID: mdl-27068149

ABSTRACT

Thirty-three isolates of Campylobacter coli and three isolates of Campylobacter jejuni were recovered from 150 1-day-old ducklings. All isolates were sensitive to chloramphenicol and amikacin, but resistant to sulfamethoxazole-trimethoprim (SXT) by the disc diffusion method. Most isolates were susceptible to tetracycline and erythromycin, but resistant to ofloxacin and ciprofloxacin. Of the 33 C. coli isolates, nine were positive for the tetracycline resistance gene tet(O), although only two of these were resistant to tetracycline in the disc diffusion test. None of the isolates possessed mutations in the quinolone resistance-determining region (QRDR) of the gyrA gene infrequently linked to FQ-resistance. The finding indicated that ducklings may be a source of antibiotic resistant Campylobacter spp. with potential poultry and public health hazard.


Subject(s)
Anti-Bacterial Agents/pharmacology , Campylobacter Infections/veterinary , Campylobacter/drug effects , DNA Gyrase/genetics , Drug Resistance, Bacterial , Ducks , Poultry Diseases/epidemiology , Animals , Animals, Newborn , Base Sequence , Campylobacter/enzymology , Campylobacter/genetics , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Campylobacter coli/drug effects , Campylobacter coli/enzymology , Campylobacter coli/genetics , Campylobacter jejuni/drug effects , Campylobacter jejuni/enzymology , Campylobacter jejuni/genetics , Egypt/epidemiology , Phylogeny , Polymorphism, Genetic , Poultry Diseases/microbiology , Quinolones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...