Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Sci Rep ; 14(1): 10806, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734728

ABSTRACT

The integration of renewable energy resources into the smart grids improves the system resilience, provide sustainable demand-generation balance, and produces clean electricity with minimal leakage currents. However, the renewable sources are intermittent in nature. Therefore, it is necessary to develop scheduling strategy to optimise hybrid PV-wind-controllable distributed generator based Microgrids in grid-connected and stand-alone modes of operation. In this manuscript, a priority-based cost optimization function is developed to show the relative significance of one cost component over another for the optimal operation of the Microgrid. The uncertainties associated with various intermittent parameters in Microgrid have also been introduced in the proposed scheduling methodology. The objective function includes the operating cost of CDGs, the emission cost associated with CDGs, the battery cost, the cost of grid energy exchange, and the cost associated with load shedding. A penalty function is also incorporated in the cost function for violations of any constraints. Multiple scenarios are generated using Monte Carlo simulation to model uncertain parameters of Microgrid (MG). These scenarios consist of the worst as well as the best possible cases, reflecting the microgrid's real-time operation. Furthermore, these scenarios are reduced by using a k-means clustering algorithm. The reduced procedures for uncertain parameters will be used to obtain the minimum cost of MG with the help of an optimisation algorithm. In this work, a meta-heuristic approach, grey wolf optimisation (GWO), is used to minimize the developed cost optimisation function of MG. The standard LV Microgrid CIGRE test network is used to validate the proposed methodology. Results are obtained for different cases by considering different priorities to the sub-objectives using GWO algorithm. The obtained results are compared with the results of Jaya and PSO (particle swarm optimization) algorithms to validate the efficacy of the GWO method for the proposed optimization problem.

2.
Sci Rep ; 14(1): 11267, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760466

ABSTRACT

Multi-criteria decision-making (MCDM) presents a significant challenge in decision-making processes, aiming to ascertain optimal choice by considering multiple criteria. This paper proposes rank order centroid (ROC) method, MCDM technique, to determine weights for sub-objective functions, specifically, addressing issue of automatic generation control (AGC) within two area interconnected power system (TAIPS). The sub-objective functions include integral time absolute errors (ITAE) for frequency deviations and control errors in both areas, along with ITAE of fluctuation in tie-line power. These are integrated into an overall objective function, with ROC method systematically assigning weights to each sub-objective. Subsequently, a PID controller is designed based on this objective function. To further optimize objective function, Jaya optimization algorithm (JOA) is implemented, alongside other optimization algorithms such as teacher-learner based optimization algorithm (TLBOA), Luus-Jaakola algorithm (LJA), Nelder-Mead simplex algorithm (NMSA), elephant herding optimization algorithm (EHOA), and differential evolution algorithm (DEA). Six distinct case analyses are conducted to evaluate controller's performance under various load conditions, plotting data to illustrate responses to frequency and tie-line exchange fluctuations. Additionally, statistical analysis is performed to provide further insights into efficacy of JOA-based PID controller. Furthermore, to prove the efficacy of JOA-based proposed controller through non-parametric test, Friedman rank test is utilized.

3.
Sci Rep ; 14(1): 3453, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342929

ABSTRACT

The parameter identification problem of photovoltaic (PV) models is classified as a complex nonlinear optimization problem that cannot be accurately solved by traditional techniques. Therefore, metaheuristic algorithms have been recently used to solve this problem due to their potential to approximate the optimal solution for several complicated optimization problems. Despite that, the existing metaheuristic algorithms still suffer from sluggish convergence rates and stagnation in local optima when applied to tackle this problem. Therefore, this study presents a new parameter estimation technique, namely HKOA, based on integrating the recently published Kepler optimization algorithm (KOA) with the ranking-based update and exploitation improvement mechanisms to accurately estimate the unknown parameters of the third-, single-, and double-diode models. The former mechanism aims at promoting the KOA's exploration operator to diminish getting stuck in local optima, while the latter mechanism is used to strengthen its exploitation operator to faster converge to the approximate solution. Both KOA and HKOA are validated using the RTC France solar cell and five PV modules, including Photowatt-PWP201, Ultra 85-P, Ultra 85-P, STP6-120/36, and STM6-40/36, to show their efficiency and stability. In addition, they are extensively compared to several optimization techniques to show their effectiveness. According to the experimental findings, HKOA is a strong alternative method for estimating the unknown parameters of PV models because it can yield substantially different and superior findings for the third-, single-, and double-diode models.

4.
Biomimetics (Basel) ; 8(8)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38132550

ABSTRACT

Soft continuum robots, inspired by the adaptability and agility of natural soft-bodied organisms like octopuses and elephant trunks, present a frontier in robotics research. However, exploiting their full potential necessitates precise modeling and control for specific motion and manipulation tasks. This study introduces an innovative approach using Deep Convolutional Neural Networks (CNN) for the inverse quasi-static modeling of these robots within the Absolute Nodal Coordinate Formulation (ANCF) framework. The ANCF effectively represents the complex non-linear behavior of soft continuum robots, while the CNN-based models are optimized for computational efficiency and precision. This combination is crucial for addressing the complex inverse statics problems associated with ANCF-modeled robots. Extensive numerical experiments were conducted to assess the performance of these Deep CNN-based models, demonstrating their suitability for real-time simulation and control in statics modeling. Additionally, this study includes a detailed cross-validation experiment to identify the most effective model architecture, taking into account factors such as the number of layers, activation functions, and unit configurations. The results highlight the significant benefits of integrating Deep CNN with ANCF models, paving the way for advanced statics modeling in soft continuum robotics.

5.
Heliyon ; 9(4): e15407, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37123955

ABSTRACT

Computer science graduates face a massive gap between industry-relevant skills and those learned at school. Industry practitioners often counter a huge challenge when moving from academics to industry, requiring a completely different set of skills and knowledge. It is essential to fill the gap between the industry's required skills and those taught at varsities. In this study, we leverage deep learning and big data to propose a framework that maps the required skills with those acquired by computing graduates. Based on the mapping, we recommend enhancing the computing curriculum to match the industry-relevant skills. Our proposed framework consists of four layers: data, embedding, mapping, and a curriculum enhancement layer. Based on the recommendations from the mapping module, we made revisions and modifications to the computing curricula. Finally, we perform a case study of the Norwegian IT jobs market, where we make recommendations for data science and software engineering-related jobs. We argue that by using our proposed methodology and analysis, a significant enhancement in the computing curriculum is possible to help increase employability, student satisfaction, and smart decision-making.

6.
Sensors (Basel) ; 23(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36991652

ABSTRACT

Industry 4.0 has revolutionized the use of physical and digital systems while playing a vital role in the digitalization of maintenance plans for physical assets in an optimal way. Road network conditions and timely maintenance plans are essential in the predictive maintenance (PdM) of a road. We developed a PdM-based approach that uses pre-trained deep learning models to recognize and detect the road crack types effectively and efficiently. We, in this work, explore the use of deep neural networks to classify roads based on the amount of deterioration. This is done by training the network to identify various types of cracks, corrugation, upheaval, potholes, and other types of road damage. Based on the amount and severity of the damage, we can determine the degradation percentage and have a PdM framework where we can identify the intensity of damage occurrence and, thus, prioritize the maintenance decisions. The inspection authorities and stakeholders can make maintenance decisions for certain types of damages using our deep learning-based road predictive maintenance framework. We evaluated our approach using precision, recall, F1-score, intersection-over-union, structural similarity index, and mean average precision measures, and found that our proposed framework achieved significant performance.

7.
Entropy (Basel) ; 25(3)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36981402

ABSTRACT

A disturbance/uncertainty estimation and disturbance rejection technique are proposed in this work and verified on a ground two-wheel differential drive mobile robot (DDMR) in the presence of a mismatched disturbance. The offered scheme is the an improved active disturbance rejection control (IADRC) approach-based enhanced dynamic speed controller. To efficiently eliminate the effect produced by the system uncertainties and external torque disturbance on both wheels, the IADRC is adopted, whereby all the torque disturbances and DDMR parameter uncertainties are conglomerated altogether and considered a generalized disturbance. This generalized disturbance is observed and cancelled by a novel nonlinear sliding mode extended state observer (NSMESO) in real-time. Through numerical simulations, various performance indices are measured, with a reduction of 86% and 97% in the ITAE index for the right and left wheels, respectively. Finally, these indices validate the efficacy of the proposed dynamic speed controller by almost damping the chattering phenomena and supplying a high insusceptibility in the closed-loop system against torque disturbance.

8.
Inform Health Soc Care ; 48(2): 181-195, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-35702818

ABSTRACT

About 40 000 individuals depend on assisted living in long-term care facilities in Norway. Around 80% of these have a cognitive impairment or suffer from dementia. This actualizes the need for activities that are tailored to individual needs. For some users, technology-assisted participation in communal activities can be an alternative approach to increasing their quality of life. To gain insight about the experiences of residents and healthcare professionals in long-term care facilities when interacting with the social robot Pepper. This is a qualitative pilot study. After a series of interventions with the robot in a long-term care facility, data were collected through individual interviews with healthcare professional and residents. These were analyzed through a qualitative content analysis. A thematic analysis identified three major themes: 1) Activity, joy and ambivalence, 2) challenges when introducing social robots in contexts of care and 3) thoughts about the future. Although employees and residents report that they enjoyed interactions with the social robot, highlighting opportunities for novel types of activities and action that differed from the daily routine, the subjects articulated several concerns and challenges. Developments in intelligent social robots is still in its infancy, despite much hype.


Subject(s)
Robotics , Humans , Pilot Projects , Long-Term Care , Quality of Life , Social Interaction
9.
Virtual Real ; : 1-18, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36465891

ABSTRACT

Immersive virtual reality (VR)-based exercise video games (exergames) are increasingly being employed as a supportive intervention in rehabilitation programs to promote engagement in physical activity, especially for elderly users. A multifaceted and iterative codesign process is essential to develop sustainable exergaming solutions. The social aspect is considered one of the key motivating factors in exergames; however, research on the social aspect of VR exergames has been limited. Previous studies have relied on competitiveness in exergames, but research has shown that competition can lead to adverse effects on users. With the aim of motivating elderly individuals to participate in physical exercise and improving social connectedness during rehabilitation, this work presents a social VR-based collaborative exergame codesigned with elderly participants and therapists. This exergame stimulates full-body exercise and supports social collaboration among users through a collaborative game task. Furthermore, this article presents a user study based on a mixed-methods approach to gather user feedback on exergame design and the effect of social collaboration versus playing alone in a VR exergame in terms of physical exertion and motivation. This study spanned five weeks (99 exergaming sessions) with 14 elderly participants divided into two groups, one playing collaboratively and the other playing individually. Between-group comparisons were performed at baseline (first week) and in the fourth week, and within-group comparisons were performed in the fifth week, when the participants played the exergame in counterbalanced order. In contrast to the first week, the participants exergaming collaboratively in the fourth week reported significantly higher intrinsic motivation on all subscales (enjoyment: p < 0.02, effort: p < 0.002, usefulness: p < 0.01) and physical exertion (p < 0.001) than those playing alone. Thereafter, exergaming in counterbalanced order during the fifth week resulted in significant differences (medium to large effect size) within groups. The participants found the social VR gameplay enjoyable and agreed that collaboration played a vital role in their motivation. They reported various health benefits, a minimal increase in symptoms of simulator sickness, and excellent usability scores (83.75±13.3). In this work, we also identify various key design principles to support healthcare professionals, researchers and industrial experts in developing ergonomic and sustainable VR-based exergames for senior citizens.

10.
Diagnostics (Basel) ; 12(12)2022 12 12.
Article in English | MEDLINE | ID: mdl-36553145

ABSTRACT

Schistosomiasis is a neglected tropical disease that continues to be a leading cause of illness and mortality around the globe. The causing parasites are affixed to the skin through defiled water and enter the human body. Failure to diagnose Schistosomiasis can result in various medical complications, such as ascites, portal hypertension, esophageal varices, splenomegaly, and growth retardation. Early prediction and identification of risk factors may aid in treating disease before it becomes incurable. We aimed to create a framework by incorporating the most significant features to predict Schistosomiasis using machine learning techniques. A dataset of advanced Schistosomiasis has been employed containing recovery and death cases. A total data of 4316 individuals containing recovery and death cases were included in this research. The dataset contains demographics, socioeconomic, and clinical factors with lab reports. Data preprocessing techniques (missing values imputation, outlier removal, data normalisation, and data transformation) have also been employed for better results. Feature selection techniques, including correlation-based feature selection, Information gain, gain ratio, ReliefF, and OneR, have been utilised to minimise a large number of features. Data resampling algorithms, including Random undersampling, Random oversampling, Cluster Centroid, Near miss, and SMOTE, are applied to address the data imbalance problem. We applied four machine learning algorithms to construct the model: Gradient Boosting, Light Gradient Boosting, Extreme Gradient Boosting and CatBoost. The performance of the proposed framework has been evaluated based on Accuracy, Precision, Recall and F1-Score. The results of our proposed framework stated that the CatBoost model showed the best performance with the highest accuracy of (87.1%) compared with Gradient Boosting (86%), Light Gradient Boosting (86.7%) and Extreme Gradient Boosting (86.9%). Our proposed framework will assist doctors and healthcare professionals in the early diagnosis of Schistosomiasis.

11.
Sensors (Basel) ; 22(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36236255

ABSTRACT

In this paper, we address the problems of fraud and anomalies in the Bitcoin network. These are common problems in e-banking and online transactions. However, as the financial sector evolves, so do the methods for fraud and anomalies. Moreover, blockchain technology is being introduced as the most secure method integrated into finance. However, along with these advanced technologies, many frauds are also increasing every year. Therefore, we propose a secure fraud detection model based on machine learning and blockchain. There are two machine learning algorithms-XGboost and random forest (RF)-used for transaction classification. The machine learning techniques train the dataset based on the fraudulent and integrated transaction patterns and predict the new incoming transactions. The blockchain technology is integrated with machine learning algorithms to detect fraudulent transactions in the Bitcoin network. In the proposed model, XGboost and random forest (RF) algorithms are used to classify transactions and predict transaction patterns. We also calculate the precision and AUC of the models to measure the accuracy. A security analysis of the proposed smart contract is also performed to show the robustness of our system. In addition, an attacker model is also proposed to protect the proposed system from attacks and vulnerabilities.


Subject(s)
Blockchain , Algorithms , Fraud , Machine Learning , Technology
12.
Diagnostics (Basel) ; 12(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36140516

ABSTRACT

Efficient skin cancer detection using images is a challenging task in the healthcare domain. In today's medical practices, skin cancer detection is a time-consuming procedure that may lead to a patient's death in later stages. The diagnosis of skin cancer at an earlier stage is crucial for the success rate of complete cure. The efficient detection of skin cancer is a challenging task. Therefore, the numbers of skilful dermatologists around the globe are not enough to deal with today's healthcare. The huge difference between data from various healthcare sector classes leads to data imbalance problems. Due to data imbalance issues, deep learning models are often trained on one class more than others. This study proposes a novel deep learning-based skin cancer detector using an imbalanced dataset. Data augmentation was used to balance various skin cancer classes to overcome the data imbalance. The Skin Cancer MNIST: HAM10000 dataset was employed, which consists of seven classes of skin lesions. Deep learning models are widely used in disease diagnosis through images. Deep learning-based models (AlexNet, InceptionV3, and RegNetY-320) were employed to classify skin cancer. The proposed framework was also tuned with various combinations of hyperparameters. The results show that RegNetY-320 outperformed InceptionV3 and AlexNet in terms of the accuracy, F1-score, and receiver operating characteristic (ROC) curve both on the imbalanced and balanced datasets. The performance of the proposed framework was better than that of conventional methods. The accuracy, F1-score, and ROC curve value obtained with the proposed framework were 91%, 88.1%, and 0.95, which were significantly better than those of the state-of-the-art method, which achieved 85%, 69.3%, and 0.90, respectively. Our proposed framework may assist in disease identification, which could save lives, reduce unnecessary biopsies, and reduce costs for patients, dermatologists, and healthcare professionals.

13.
J Clin Med ; 11(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36142989

ABSTRACT

Globally, coal remains one of the natural resources that provide power to the world. Thousands of people are involved in coal collection, processing, and transportation. Particulate coal dust is produced during these processes, which can crush the lung structure of workers and cause pneumoconiosis. There is no automated system for detecting and monitoring diseases in coal miners, except for specialist radiologists. This paper proposes ensemble learning techniques for detecting pneumoconiosis disease in chest X-ray radiographs (CXRs) using multiple deep learning models. Three ensemble learning techniques (simple averaging, multi-weighted averaging, and majority voting (MVOT)) were proposed to investigate performances using randomised cross-folds and leave-one-out cross-validations datasets. Five statistical measurements were used to compare the outcomes of the three investigations on the proposed integrated approach with state-of-the-art approaches from the literature for the same dataset. In the second investigation, the statistical combination was marginally enhanced in the ensemble of multi-weighted averaging on a robust model, CheXNet. However, in the third investigation, the same model elevated accuracies from 87.80 to 90.2%. The investigated results helped us identify a robust deep learning model and ensemble framework that outperformed others, achieving an accuracy of 91.50% in the automated detection of pneumoconiosis.

14.
Plants (Basel) ; 11(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893629

ABSTRACT

Tea (Camellia sinensis L.) is one of the most highly consumed beverages globally after water. Several countries import large quantities of tea from other countries to meet domestic needs. Therefore, accurate and timely prediction of tea yield is critical. The previous studies used statistical, deep learning, and machine learning techniques for tea yield prediction, but crop simulation models have not yet been used. However, the calibration of a simulation model for tea yield prediction and the comparison of these approaches is needed regarding the different data types. This research study aims to provide a comparative study of the methods for tea yield prediction using the Food and Agriculture Organization (FAO) of the United Nations AquaCrop simulation model and machine learning techniques. We employed weather, soil, crop, and agro-management data from 2016 to 2019 acquired from tea fields of the National Tea and High-Value Crop Research Institute (NTHRI), Pakistan, to calibrate the AquaCrop simulation model and to train regression algorithms. We achieved a mean absolute error (MAE) of 0.45 t/ha, a mean squared error (MSE) of 0.23 t/ha, and a root mean square error (RMSE) of 0.48 t/ha in the calibration of the AquaCrop model and, out of the ten regression models, we achieved the lowest MAE of 0.093 t/ha, MSE of 0.015 t/ha, and RMSE of 0.120 t/ha using 10-fold cross-validation and MAE of 0.123 t/ha, MSE of 0.024 t/ha, and RMSE of 0.154 t/ha using the XGBoost regressor with train test split. We concluded that the machine learning regression algorithm performed better in yield prediction using fewer data than the simulation model. This study provides a technique to improve tea yield prediction by combining different data sources using a crop simulation model and machine learning algorithms.

15.
Article in English | MEDLINE | ID: mdl-35682023

ABSTRACT

Computer-aided diagnostic (CAD) systems can assist radiologists in detecting coal workers' pneumoconiosis (CWP) in their chest X-rays. Early diagnosis of the CWP can significantly improve workers' survival rate. The development of the CAD systems will reduce risk in the workplace and improve the quality of chest screening for CWP diseases. This systematic literature review (SLR) amis to categorise and summarise the feature extraction and detection approaches of computer-based analysis in CWP using chest X-ray radiographs (CXR). We conducted the SLR method through 11 databases that focus on science, engineering, medicine, health, and clinical studies. The proposed SLR identified and compared 40 articles from the last 5 decades, covering three main categories of computer-based CWP detection: classical handcrafted features-based image analysis, traditional machine learning, and deep learning-based methods. Limitations of this review and future improvement of the review are also discussed.


Subject(s)
Anthracosis , Coal Mining , Pneumoconiosis , Anthracosis/diagnostic imaging , Coal , Computers , Humans , Machine Learning , Pneumoconiosis/diagnostic imaging , X-Rays
16.
Sensors (Basel) ; 22(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35062507

ABSTRACT

Pollution in the form of litter in the natural environment is one of the great challenges of our times. Automated litter detection can help assess waste occurrences in the environment. Different machine learning solutions have been explored to develop litter detection tools, thereby supporting research, citizen science, and volunteer clean-up initiatives. However, to the best of our knowledge, no work has investigated the performance of state-of-the-art deep learning object detection approaches in the context of litter detection. In particular, no studies have focused on the assessment of those methods aiming their use in devices with low processing capabilities, e.g., mobile phones, typically employed in citizen science activities. In this paper, we fill this literature gap. We performed a comparative study involving state-of-the-art CNN architectures (e.g., Faster RCNN, Mask-RCNN, EfficientDet, RetinaNet and YOLO-v5), two litter image datasets and a smartphone. We also introduce a new dataset for litter detection, named PlastOPol, composed of 2418 images and 5300 annotations. The experimental results demonstrate that object detectors based on the YOLO family are promising for the construction of litter detection solutions, with superior performance in terms of detection accuracy, processing time, and memory footprint.


Subject(s)
Citizen Science , Deep Learning , Humans , Machine Learning , Smartphone
17.
Process Saf Environ Prot ; 159: 585-604, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35035118

ABSTRACT

Various unexpected, low-probability events can have short or long-term effects on organizations and the global economy. Hence there is a need for appropriate risk management practices within organizations to increase their readiness and resiliency, especially if an event may lead to a series of irreversible consequences. One of the main aspects of risk management is to analyze the levels of change and risk in critical variables which the organization's survival depends on. In these cases, an awareness of risks provides a practical plan for organizational managers to reduce/avoid them. Various risk analysis methods aim at analyzing the interactions of multiple risk factors within a specific problem. This paper develops a new method of variability and risk analysis, termed R.Graph, to examine the effects of a chain of possible risk factors on multiple variables. Additionally, different configurations of risk analysis are modeled, including acceptable risk, analysis of maximum and minimum risks, factor importance, and sensitivity analysis. This new method's effectiveness is evaluated via a practical analysis of the economic consequences of new Coronavirus in the electricity industry.

18.
Sensors (Basel) ; 21(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668751

ABSTRACT

In Vehicular Adhoc Networks (VANETs), disseminating Emergency Messages (EMs) to a maximum number of vehicles with low latency and low packet loss is critical for road safety. However, avoiding the broadcast storm and dealing with large-scale dissemination of EMs in urban VANETs, particularly at intersections, are the challenging tasks. The problems become even more challenging in a dense network. We propose an Effective Emergency Message Dissemination Scheme (EEMDS) for urban VANETs. The scheme is based on our mobility metrics to avoid communication overhead and to maintain a stable cluster structure. Every vehicle takes into account its direction angle and path loss factor for selecting a suitable cluster head. Moreover, we introduce estimated link stability to choose a suitable relay vehicle that reduces the number of rebroadcasts and communication congestion in the network. Simulation results show that EEMDS provides an acceptable end-to-end delay, information coverage, and packet delivery ratio compared to the eminent EM dissemination schemes.

19.
ISA Trans ; 113: 9-27, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32005404

ABSTRACT

In order to identify and eliminate known or potential failures from the process of product design, development and production, failure mode and effect analysis (FMEA) have been widely used in a variety of industries as a useful tool in prognostics and health management, safety and reliability analysis. The traditional FMEA shows two significant flaws while calculating the risk priority number (RPN). First, recovery time that considerably affects the safety, cost, and sustainability of the system is not considered in the RPN calculation. Second, in order to capture different conflicting experts' views, especially when the obtained data are fuzzy, there is no mechanism. In order to overcome these issues, this paper presents a resilience-based risk priority number for considering the recovery and repair time of each failure mode, then a risk-based fuzzy information processing and decision-making is developed by modifying the R-numbers methodology and on the basis of simultaneous evaluation of criteria and alternatives (SECA) approach which is so-called R-SECA method. The capability of proposed models is tested by a case study of a centrifugal air compressor in a steel manufacturing company. Results show the robustness of proposed R-SECA model in dealing with different scenarios of risky information.

20.
Data Brief ; 33: 106520, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33294517

ABSTRACT

The year 2020 has changed the living style of people all around the world. Corona pandemic has affected the people in all fields of life economically, physically, and mentally. This dataset is a collection of published articles discussing the effect of COVID and SARS on the social sciences from 2003 to 2020. This dataset collection and analysis highlight the significance and influential aspects, research streams, and themes in this domain. The analysis provides top journals, highly cited articles, mostly used keywords, top affiliation institutes, leading countries based on the citation, potential research streams, a thematic map, and future directions in this area of research. In the future, this dataset will be helpful for every researcher and policymakers to proceed as a starting point to identify the relevant research based on the analysis of 18 years of research in this domain.

SELECTION OF CITATIONS
SEARCH DETAIL
...