Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Plant Biotechnol J ; 22(5): 1146-1163, 2024 May.
Article in English | MEDLINE | ID: mdl-38038125

ABSTRACT

The unfolded protein response (UPR) allows cells to cope with endoplasmic reticulum (ER) stress induced by accumulation of misfolded proteins in the ER. Due to its sensitivity to Agrobacterium tumefaciens, the model plant Nicotiana benthamiana is widely employed for transient expression of recombinant proteins of biopharmaceutical interest, including antibodies and virus surface proteins used for vaccine production. As such, study of the plant UPR is of practical significance, since enforced expression of complex secreted proteins often results in ER stress. After 6 days of expression, we recently reported that influenza haemagglutinin H5 induces accumulation of UPR proteins. Since up-regulation of corresponding UPR genes was not detected at this time, accumulation of UPR proteins was hypothesized to be independent of transcriptional induction, or associated with early but transient UPR gene up-regulation. Using time course sampling, we here show that H5 expression does result in early and transient activation of the UPR, as inferred from unconventional splicing of NbbZIP60 transcripts and induction of UPR genes with varied functions. Transient nature of H5-induced UPR suggests that this response was sufficient to cope with ER stress provoked by expression of the secreted protein, as opposed to an antibody that triggered stronger and more sustained UPR activation. As up-regulation of defence genes responding to H5 expression was detected after the peak of UPR activation and correlated with high increase in H5 protein accumulation, we hypothesize that these immune responses, rather than the UPR, were responsible for onset of the necrotic symptoms on H5-expressing leaves.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Nicotiana/genetics , Hemagglutinins , Unfolded Protein Response/genetics , Endoplasmic Reticulum Stress/genetics
2.
Plant Biotechnol J ; 22(5): 1078-1100, 2024 May.
Article in English | MEDLINE | ID: mdl-38041470

ABSTRACT

The production of influenza vaccines in plants is achieved through transient expression of viral hemagglutinins (HAs), a process mediated by the bacterial vector Agrobacterium tumefaciens. HA proteins are then produced and matured through the secretory pathway of plant cells, before being trafficked to the plasma membrane where they induce formation of virus-like particles (VLPs). Production of VLPs unavoidably impacts plant cells, as do viral suppressors of RNA silencing (VSRs) that are co-expressed to increase recombinant protein yields. However, little information is available on host molecular responses to foreign protein expression. This work provides a comprehensive overview of molecular changes occurring in Nicotiana benthamiana leaf cells transiently expressing the VSR P19, or co-expressing P19 and an influenza HA. Our data identifies general responses to Agrobacterium-mediated expression of foreign proteins, including shutdown of chloroplast gene expression, activation of oxidative stress responses and reinforcement of the plant cell wall through lignification. Our results also indicate that P19 expression promotes salicylic acid (SA) signalling, a process dampened by co-expression of the HA protein. While reducing P19 level, HA expression also induces specific signatures, with effects on lipid metabolism, lipid distribution within membranes and oxylipin-related signalling. When producing VLPs, dampening of P19 responses thus likely results from lower expression of the VSR, crosstalk between SA and oxylipin pathways, or a combination of both outcomes. Consistent with the upregulation of oxidative stress responses, we finally show that reduction of oxidative stress damage through exogenous application of ascorbic acid improves plant biomass quality during production of VLPs.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Humans , Nicotiana/genetics , Plants, Genetically Modified/genetics , Oxylipins/metabolism , Agrobacterium tumefaciens/genetics , Orthomyxoviridae/genetics , Plant Leaves/genetics
3.
J Proteome Res ; 19(1): 106-118, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31789035

ABSTRACT

Partial neutralization of the Golgi lumen pH by the ectopic expression of influenza virus M2 proton channel is useful to stabilize acid-labile recombinant proteins in plant cells, but the impact of pH gradient mitigation on host cellular functions has not been investigated. Here, we assessed the unintended effects of M2 expression on the leaf proteome of Nicotiana benthamiana infiltrated with the bacterial gene vector Agrobacterium tumefaciens. An isobaric tags for relative and absolute quantification quantitative proteomics procedure was followed to compare the leaf proteomes of plants agroinfiltrated with either an "empty" vector or an M2-encoding vector. Leaves infiltrated with the empty vector had a low soluble protein content compared to noninfiltrated control leaves, associated with increased levels of stress-related proteins but decreased levels of photosynthesis-associated proteins. M2 expression partly compromised these effects of agroinfiltration to restore soluble protein content in the leaf tissue, associated with restored levels of photosynthesis-associated proteins and reduced levels of stress-related proteins in the apoplast. These data illustrate the cell-wide influence of the Golgi lumen pH homeostasis on the leaf proteome of N. benthamiana responding to microbial challenge. They also underline the relevance of assessing the eventual unintended effects of accessory proteins used to modulate specific cellular or metabolic functions in plant protein biofactories.


Subject(s)
Nicotiana , Secretory Pathway , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Proton-Motive Force , Nicotiana/genetics , Nicotiana/metabolism
4.
Plant Physiol ; 171(1): 658-74, 2016 05.
Article in English | MEDLINE | ID: mdl-26951433

ABSTRACT

One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N', which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N' results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N' is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins.


Subject(s)
Capsid Proteins/metabolism , Chloroplasts/metabolism , Host-Pathogen Interactions/physiology , Nicotiana/metabolism , Plant Proteins/metabolism , Cell Death , Cytosol/metabolism , Gene Expression Regulation, Plant , Light , Plant Cells , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Domains , Nicotiana/cytology , Nicotiana/virology , Tobamovirus , Two-Hybrid System Techniques
5.
Trends Plant Sci ; 19(2): 79-89, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24342084

ABSTRACT

Calcium-dependent protein kinases (CDPKs) are multifunctional proteins that combine calcium-binding and signaling capabilities within a single gene product. This unique versatility enables multiple plant biological processes to be controlled, including developmental programs and stress responses. The genome of flowering plants typically encodes around 30 CDPK homologs that cluster in four conserved clades. In this review, we take advantage of the recent availability of genome sequences from green algae and early land plants to examine how well the previously described CDPK family from angiosperms compares to the broader evolutionary states associated with early diverging green plant lineages. Our analysis suggests that the current architecture of the CDPK family was shaped during the colonization of the land by plants, whereas CDPKs from ancestor green algae have continued to evolve independently.


Subject(s)
Genomics , Protein Kinases/genetics , Viridiplantae/enzymology
6.
BMC Evol Biol ; 13: 87, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23601377

ABSTRACT

BACKGROUND: The Ran GTPase Activating Protein 2 (RanGAP2) was first described as a regulator of mitosis and nucleocytoplasmic trafficking. It was then found to interact with the Coiled-Coil domain of the Rx and GPA2 resistance proteins, which confer resistance to Potato Virus X (PVX) and potato cyst nematode Globodera pallida, respectively. RanGAP2 is thought to mediate recognition of the avirulence protein GP-RBP-1 by GPA2. However, the Gpa2-induced hypersensitive response appears to be relatively weak and Gpa2 is limited in terms of spectrum of efficiency as it is effective against only two nematode populations. While functional and evolutionary analyses of Gp-Rbp-1 and Gpa2 identified key residues in both the resistance and avirulence proteins that are involved in recognition determination, whether variation in RanGAP2 also plays a role in pathogen recognition has not been investigated. RESULTS: We amplified a total of 147 RanGAP2 sequences from 55 accessions belonging to 18 different di-and tetraploid Solanum species from the section Petota. Among the newly identified sequences, 133 haplotypes were obtained and 19.1% of the nucleotide sites were found to be polymorphic. The observed intra-specific nucleotide diversity ranges from 0.1 to 1.3%. Analysis of the selection pressures acting on RanGAP2 suggests that this gene evolved mainly under purifying selection. Nonetheless, we identified polymorphic positions in the protein sequence at the intra-specific level, which could modulate the activity of RanGAP2. Two polymorphic sites and a three amino-acid deletion in RanGAP2 were found to affect the timing and intensity of the Gpa2-induced hypersensitive response to avirulent GP-RBP-1 variants even though they did not confer any gain of recognition of virulent GP-RBP-1 variants. CONCLUSIONS: Our results highlight how a resistance gene co-factor can manage in terms of evolution both an established role as a cell housekeeping gene and an implication in plant parasite interactions. StRanGAP2 gene appears to evolve under purifying selection. Its variability does not seem to influence the specificity of GPA2 recognition but is able to modulate this activity by enhancing the defence response. It seems therefore that the interaction with the plant resistance protein GPA2 (and/or Rx) rather than with the nematode effector was the major force in the evolution of the RanGAP2 locus in potato. From a mechanistic point of view these results are in accordance with a physical interaction of RanGAP2 with GPA2 and suggest that RBP-1 would rather bind the RanGAP2-GPA2 complex than the RanGAP2 protein alone.


Subject(s)
Evolution, Molecular , GTPase-Activating Proteins/genetics , Genetic Variation , Helminth Proteins/immunology , Plant Diseases/parasitology , Plant Proteins/genetics , Solanum tuberosum/genetics , Tylenchoidea/immunology , Animals , Base Sequence , GTPase-Activating Proteins/immunology , Helminth Proteins/genetics , Phylogeny , Plant Diseases/genetics , Plant Diseases/immunology , Plant Proteins/immunology , Protein Binding , Selection, Genetic , Solanum tuberosum/immunology , Solanum tuberosum/parasitology , Tylenchoidea/genetics
7.
Plant Cell ; 24(4): 1327-51, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22517321

ABSTRACT

Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.


Subject(s)
Conserved Sequence/genetics , Fungi/enzymology , Host-Pathogen Interactions , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Plants/microbiology , Fungi/genetics , Mitogen-Activated Protein Kinases/classification , Mitogen-Activated Protein Kinases/genetics
8.
Plant Physiol ; 157(3): 1379-93, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21873571

ABSTRACT

Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Populus/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Zinc Fingers , Amino Acid Sequence , Amino Acids/metabolism , Arabidopsis/metabolism , Binding Sites , Cell Nucleus/enzymology , Conserved Sequence/genetics , Gene Expression Regulation, Plant , Molecular Sequence Data , Phosphorylation , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/isolation & purification , Populus/enzymology , Populus/genetics , Populus/microbiology , Protein Binding , Protein Structure, Tertiary , Protein Transport , Protoplasts/metabolism
9.
Mol Plant Microbe Interact ; 24(8): 918-31, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21501087

ABSTRACT

Plant genomes encode large numbers of nucleotide-binding, leucine-rich repeat (NB-LRR) proteins, many of which are active in pathogen detection and defense response induction. NB-LRR proteins fall into two broad classes: those with a Toll and interleukin-1 receptor (TIR) domain at their N-terminus and those with a coiled-coil (CC) domain at the N-terminus. Within CC-NB-LRR-encoding genes, one basal clade is distinguished by having CC domains resembling the Arabidopsis thaliana RPW8 protein, which we refer to as CCR domains. Here, we show that CCR-NB-LRR-encoding genes are present in the genomes of all higher plants surveyed, and that they comprise two distinct subgroups: one typified by the Nicotiana benthamiana N-required gene 1 (NRG1) protein and the other typified by the Arabidopsis activated disease resistance gene 1 (ADR1) protein. We further report that, in contrast to CC-NB-LRR proteins, the CCR domains of both NRG1- and ADR1-like proteins are sufficient for the induction of defense responses, and that this activity appears to be SGT1-independent. Additionally, we report the apparent absence of both NRG1 homologs and TIR-NB-LRR-encoding genes from the dicot Aquilegia coerulea and the dicotyledonous order Lamiales as well as from monocotyledonous species. This strong correlation in occurrence is suggestive of a functional relationship between these two classes of NB-LRR proteins.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Death/physiology , Gene Expression Regulation, Plant/physiology , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Cloning, Molecular , Conserved Sequence , Molecular Sequence Data , Multigene Family , Phylogeny , Plant Leaves
10.
Planta ; 232(4): 787-806, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20635098

ABSTRACT

In plants, short chitin oligosaccharides and chitosan fragments (collectively referred to as chitooligosaccharides) are well-known elicitors that trigger defense gene expression, synthesis of antimicrobial compounds, and cell wall strengthening. Recent findings have shed new light on chitin-sensing mechanisms and downstream activation of intracellular signaling networks that mediate plant defense responses. Interestingly, chitin receptors possess several lysin motif domains that are also found in several legume Nod factor receptors. Nod factors are chitin-related molecules produced by nitrogen-fixing rhizobia to induce root nodulation. The fact that chitin and Nod factor receptors share structural similarity suggests an evolutionary conserved relationship between mechanisms enabling recognition of both deleterious and beneficial microorganisms. Here, we will present an update on molecular events involved in chitooligosaccharide sensing and downstream signaling pathways in plants and will discuss how structurally related signals may lead to such contrasted outcomes during plant-microbe interactions.


Subject(s)
Chitin/metabolism , Oligosaccharides/metabolism , Signal Transduction/physiology , Host-Pathogen Interactions/physiology , Rhizobium/metabolism , Symbiosis/physiology
11.
BMC Genomics ; 7: 223, 2006 Aug 31.
Article in English | MEDLINE | ID: mdl-16945144

ABSTRACT

BACKGROUND: As in other eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. These modules rapidly amplify and transduce extracellular signals into various appropriate intracellular responses. While extensive work has been conducted on the post-translational regulation of specific MAPKKs and MAPKs in various plant species, there has been no systematic investigation of the genomic organization and transcriptional regulation of these genes. RESULTS: Ten putative poplar MAPKK genes (PtMKKs) and 21 putative poplar MAPK genes (PtMPKs) have been identified and located within the poplar (Populus trichocarpa) genome. Analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Expression profiles of all members of these two gene families were also analyzed in 17 different poplar organs, using gene-specific primers directed at the 3'-untranslated region of each candidate gene and real-time quantitative PCR. Most PtMKKs and PtMPKs were differentially expressed across this developmental series. CONCLUSION: This analysis provides a complete survey of MAPKK and MAPK gene expression profiles in poplar, a large woody perennial plant, and thus complements the extensive expression profiling data available for the herbaceous annual Arabidopsis thaliana. The poplar genome is marked by extensive segmental and chromosomal duplications, and within both kinase families, some recently duplicated paralogous gene pairs often display markedly different patterns of expression, consistent with the rapid evolution of specialized protein functions in this highly adaptive species.


Subject(s)
Gene Expression Profiling , Genome, Plant/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinases/genetics , Populus/genetics , 3' Untranslated Regions/genetics , Chromosomes, Plant/genetics , Exons/genetics , Gene Expression Regulation, Enzymologic/genetics , Gene Expression Regulation, Plant/genetics , Introns/genetics , Models, Genetic , Plant Proteins/genetics , Plant Structures/enzymology , Plant Structures/genetics , Populus/enzymology , Reverse Transcriptase Polymerase Chain Reaction/methods
12.
Trends Plant Sci ; 11(4): 192-8, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16537113

ABSTRACT

MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, and their components are encoded by highly conserved genes. The recent availability of genome sequences for rice and poplar now makes it possible to examine how well the previously described Arabidopsis MAPK and MAPKK gene family structures represent the broader evolutionary situation in plants, and analysis of gene expression data for MPK and MKK genes in all three species allows further refinement of those families, based on functionality. The Arabidopsis MAPK nomenclature appears sufficiently robust to allow it to be usefully extended to other well-characterized plant systems.


Subject(s)
Arabidopsis Proteins/classification , Arabidopsis/enzymology , Genome, Plant , Mitogen-Activated Protein Kinase Kinases/classification , Mitogen-Activated Protein Kinases/classification , Multigene Family , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Genomics , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phylogeny , Terminology as Topic
13.
Tree Physiol ; 25(3): 277-88, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15631976

ABSTRACT

Plant mitogen-activated protein kinase (MAPK) cascades are important amplifying modules that can rapidly transduce stress signals into various appropriate intracellular responses. Several extracellular regulated kinase (ERK)-type MAPKs involved in plant defense signaling have been identified in herbaceous species, but no MAPK cascade has yet been characterized in a tree species. We examined the signal transduction events that lead to activation of defense mechanisms in poplar, a major forest species of economic and ecological importance which is becoming the model tree system for studying stress and adaptation responses. We show that, in poplar cell suspensions and leaf tissue, chitosan, a non-host-specific elicitor, and ozone, a strong oxidant and atmospheric pollutant, induce rapid and transient activation of at least two myelin basic protein (MBP) kinases with apparent molecular masses of 44 and 47 kD. The chitosan- and ozone-activated kinases have characteristics of MAPKs-they preferentially phosphorylate MBP, require tyrosine and threonine phosphorylation to be activated and are specifically recognized by anti-ERK and anti-pERK antibodies. Moreover, activation of these poplar MAPKs by chitosan or ozone is dependent on the production of reactive oxygen species; the influx of calcium ions via membrane channels; the activation of an upstream, membrane-localized component; and a cognate MAPK kinase (MAPKK). These data suggest that biotic and abiotic challenges activate MAPKs in poplar, as in herbaceous species, which then function as a convergence point for pathogen defense and oxidant stress signaling cascades.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Populus/enzymology , Trees/enzymology , Blotting, Western , Chitosan/antagonists & inhibitors , Chitosan/pharmacology , Enzyme Activation , Ozone/pharmacology , Populus/physiology , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL