Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 9(1): 192, 2021 12 11.
Article in English | MEDLINE | ID: mdl-34895332

ABSTRACT

Primary spinal cord tumors contribute to ≤ 10% of central nervous system tumors in individuals of pediatric or adolescent age. Among intramedullary tumors, spinal ependymomas make up ~ 30% of this rare tumor population. A twelve-year-old male presented with an intradural, extramedullary mass occupying the dorsal spinal canal from C6 through T2. Gross total resection and histopathology revealed a World Health Organization (WHO) grade 2 ependymoma. He recurred eleven months later with extension from C2 through T1-T2. Subtotal resection was achieved followed by focal proton beam irradiation and chemotherapy. Histopathology was consistent with WHO grade 3 ependymoma. Molecular profiling of the primary and recurrent tumors revealed a novel amplification of the MYC (8q24) gene, which was confirmed by fluorescence in situ hybridization studies. Although MYC amplification in spinal ependymoma is exceedingly rare, a newly described classification of spinal ependymoma harboring MYCN (2p24) amplification (SP-MYCN) has been defined by DNA methylation-array based profiling. These individuals typically present with a malignant progression and dismal outcomes, contrary to the universally excellent survival outcomes seen in other spinal ependymomas. DNA methylation array-based classification confidently classified this tumor as SP-MYCN ependymoma. Notably, among the cohort of 52 tumors comprising the SP-MYCN methylation class, none harbor MYC amplification, highlighting the rarity of this genomic amplification in spinal ependymoma. A literature review comparing our individual to reported SP-MYCN tumors (n = 26) revealed similarities in clinical, histopathologic, and molecular features. Thus, we provide evidence from a single case to support the inclusion of MYC amplified spinal ependymoma within the molecular subgroup of SP-MYCN.


Subject(s)
Ependymoma/diagnosis , N-Myc Proto-Oncogene Protein , Spinal Cord Neoplasms/diagnosis , Spinal Neoplasms/diagnosis , Child , Ependymoma/genetics , Ependymoma/pathology , Humans , Male , Spinal Cord Neoplasms/genetics , Spinal Cord Neoplasms/pathology , Spinal Neoplasms/genetics , Spinal Neoplasms/pathology
2.
Stem Cells Transl Med ; 6(10): 1868-1879, 2017 10.
Article in English | MEDLINE | ID: mdl-28887912

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are widely studied by both academia and industry for a broad array of clinical indications. The collective body of data provides compelling evidence of the clinical safety of MSC therapy. However, generally accepted proof of therapeutic efficacy has not yet been reported. In an effort to generate a more effective therapeutic cell product, investigators are focused on modifying MSC processing protocols to enhance the intrinsic biologic activity. Here, we report a Good Manufacturing Practice-compliant two-step MSC manufacturing protocol to generate MSCs or interferon γ (IFNγ) primed MSCs which allows freshly expanded cells to be infused in patients on a predetermined schedule. This protocol eliminates the need to infuse cryopreserved, just thawed cells which may reduce the immune modulatory activity. Moreover, using (IFNγ) as a prototypic cytokine, we demonstrate the feasibility of priming the cells with any biologic agent. We then characterized MSCs and IFNγ primed MSCs prepared with our protocol, by karyotype, in vitro potential for malignant transformation, biodistribution, effect on engraftment of transplanted hematopoietic cells, and in vivo toxicity in immune deficient mice including a complete post-mortem examination. We found no evidence of toxicity attributable to the MSC or IFNγ primed MSCs. Our data suggest that the clinical risk of infusing MSCs or IFNγ primed MSCs produced by our two-step protocol is not greater than MSCs currently in practice. While actual proof of safety requires phase I clinical trials, our data support the use of either cell product in new clinical studies. Stem Cells Translational Medicine 2017;6:1868-1879.


Subject(s)
Cellular Reprogramming Techniques/standards , Clinical Trials as Topic/standards , Interferon-gamma/pharmacology , Mesenchymal Stem Cell Transplantation/standards , Mesenchymal Stem Cells/drug effects , Animals , Cells, Cultured , Cellular Reprogramming Techniques/methods , Humans , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Practice Guidelines as Topic
3.
Eur J Med Genet ; 56(11): 609-13, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24080358

ABSTRACT

A newborn with severe microcephaly and a history of parental consanguinity was referred for cytogenetic analysis and subsequently for genetic evaluation. While a 46,XY karyotype was eventually obtained, premature chromosome condensation was observed. A head MRI confirmed primary microcephaly. This combination of features focused clinical interest on the MCPH1 gene and directed genetic testing by sequence analysis and duplication/deletion studies disclosed a homozygous deletion of exons 1-11 of the MCPH1 gene. This case illustrates a strength of standard cytogenetic evaluation in directing molecular testing to a single target gene in this disorder, allowing much more rapid diagnosis at a substantial cost savings for this family.


Subject(s)
Gene Deletion , Karyotype , Microcephaly/genetics , Nerve Tissue Proteins/genetics , Cell Cycle Proteins , Chromosomes, Human/genetics , Consanguinity , Cytoskeletal Proteins , Exons , Homozygote , Humans , Infant, Newborn , Male , Maxillofacial Abnormalities/diagnosis , Maxillofacial Abnormalities/genetics , Microcephaly/diagnosis , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...