Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 50(9): 7173-7182, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37410347

ABSTRACT

BACKGROUND: The conidial Ascomycota fungus Wilsonomyces carpophilus causing shot hole in stone fruits is a major constraint in the production of stone fruits worldwide. Shothole disease symptoms appear on leaves, fruits, and twigs. Successful isolation of the pathogen from different hosts on synthetic culture medium is a time consuming and tedious procedure for identification of the pathogen based on morpho-cultural characterization. METHODS AND RESULTS: The present research was carried out to develop a successful PCR based early detection protocol for the shot hole disease of stone fruits, viz., peach, plum, apricot, cherry, and almond using the pathogen specific SSR markers developed from the Wilsonomyces carpophilus genome using Genome-wide Microsatellite Analysing Tool package (GMATA) software. Diseased leaf samples of different stone fruits were collected from the SKUAST-K orchard and the pathogen was isolated on potato dextrose agar (PDA) medium and maintained on Asthana and Hawkers' medium with a total of 50 pathogen isolates comprised of 10 isolates each from peach, plum, apricot, cherry and almond. The DNA was extracted from both healthy and infected leaf samples of different stone fruits. The DNA was also extracted from the isolated pathogen cultures (50 isolates). Out of 2851 SSR markers developed, 30 SSRs were used for the successful amplification of DNA extracted from all the 50 pathogen isolates. These SSRs were used for the amplification DNA from shot hole infected leaf samples of different stone fruits, but the amplification was not observed in the control samples (DNA from healthy leaves), thus confirming the detection of this disease directly from the shot hole infected samples using PCR based SSR markers. To our knowledge, this forms the first report of SSR development for the Wilsonomyces carpophilus and their validation for the detection of shot hole disease directly from infected leaves. CONCLUSION: PCR based SSR makers were successfully developed and used for the detection of Wilsonomyces carpophilus causing shot hole disease in stone fruits including almond in nuts for the first time. These SSR markers could successfully detect the pathogen directly from the infected leaves of stone fruits namely peach, plum, apricot and cherry including almond from the nuts.


Subject(s)
Ascomycota , Prunus domestica , Fruit/microbiology , Ascomycota/genetics , Polymerase Chain Reaction , Prunus domestica/genetics
2.
Mol Biol Rep ; 50(5): 4061-4071, 2023 May.
Article in English | MEDLINE | ID: mdl-36877348

ABSTRACT

BACKGROUND: Shot hole is one of the important fungal diseases in stone fruits viz., peach, plum, apricot and cherry caused by Wilsonomyces carpophilus and almond among nut crops. Fungicides significantly decrease the disease. Pathogenicity studies proved a wide host range of the pathogen infecting all stone fruits and almond among the nut crops, however, the mechanism underlying host-pathogen interaction is still unknown. Molecular detection of the pathogen using polymerase chain reaction (PCR) based simple sequence repeat (SSR) markers is also unknown due to the unavailability of the pathogen genome. METHODS AND RESULTS: We examined the morphology, pathology and genomics of the Wilsonomyces carpophilus. Whole genome sequencing of the W. carpophilus was carried out by Illumina HiSeq and PacBio high throughput sequencing plate-forms through hybrid assembly. Constant selection pressure alters the molecular mechanism of the pathogen causing disease. The studies revealed that the necrotrophs are more lethal with a complex pathogenicity mechanism and little-understood effector repositories. The different isolates of necrotrophic fungus W. carpophilus causing shot hole in stone fruits namely peach, plum, apricot and cherry, and almonds among the nut crops showed a significant variation in their morphology, however, the probability value (p = 0.29) suggests in-significant difference in the pathogenicity. Here, we reported draft genome of W. carpophilus of size 29.9 Mb (Accession number: PRJNA791904). A total of 10,901 protein-coding genes were predicted, including heterokaryon incompatibility genes, cytochrome-p450 genes, kinases, sugar transporters among others. We found 2851 simple sequence repeats (SSRs), tRNAs, rRNAs and pseudogenes in the genome. The most prominent proteins showing necrotrophic lifestyle of the pathogen were hydrolases, polysaccharide-degrading enzymes, esterolytic, lipolytic, and proteolytic enzymes accounted for 225 released proteins. Among the 223 fungal species, top-hit species distribution revealed the majority of hits against the Pyrenochaeta species followed by Ascochyta rabiei and Alternaria alternata. CONCLUSION: Draft genome of W. carpophilus is 29.9 Mb based on Illumina HiSeq and PacBio hybrid assembly. The necrotrophs are more lethal with a complex pathogenicity mechanism. A significant variation in morphology was observed in different pathogen isolates. A total of 10,901 protein-coding genes were predicted in the pathogen genome including heterokaryon incompatibility, cytochrome-p450 genes, kinases and sugar transporters. We found 2851 SSRs, tRNAs, rRNAs and pseudogenes, and prominent proteins showing necrotrophic lifestyle such as hydrolases, polysaccharide-degrading enzymes, esterolytic, lipolytic and proteolytic enzymes. The top-hit species distribution were against the Pyrenochaeta spp. followed by Ascochyta rabiei.


Subject(s)
Fruit , Prunus domestica , Fruit/microbiology , Whole Genome Sequencing , Peptide Hydrolases , Cytochromes , Sugars
SELECTION OF CITATIONS
SEARCH DETAIL