Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Nat Commun ; 15(1): 2156, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461154

ABSTRACT

This study establishes the physiological role of Fused in Sarcoma (FUS) in mitochondrial DNA (mtDNA) repair and highlights its implications to the pathogenesis of FUS-associated neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Endogenous FUS interacts with and recruits mtDNA Ligase IIIα (mtLig3) to DNA damage sites within mitochondria, a relationship essential for maintaining mtDNA repair and integrity in healthy cells. Using ALS patient-derived FUS mutant cell lines, a transgenic mouse model, and human autopsy samples, we discovered that compromised FUS functionality hinders mtLig3's repair role, resulting in increased mtDNA damage and mutations. These alterations cause various manifestations of mitochondrial dysfunction, particularly under stress conditions relevant to disease pathology. Importantly, rectifying FUS mutations in patient-derived induced pluripotent cells (iPSCs) preserves mtDNA integrity. Similarly, targeted introduction of human DNA Ligase 1 restores repair mechanisms and mitochondrial activity in FUS mutant cells, suggesting a potential therapeutic approach. Our findings unveil FUS's critical role in mitochondrial health and mtDNA repair, offering valuable insights into the mechanisms underlying mitochondrial dysfunction in FUS-associated motor neuron disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Mitochondrial Diseases , Motor Neuron Disease , RNA-Binding Protein FUS , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , DNA, Mitochondrial/genetics , Ligases/metabolism , Mice, Transgenic , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Mutation , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism
2.
Front Cardiovasc Med ; 10: 1212174, 2023.
Article in English | MEDLINE | ID: mdl-37781317

ABSTRACT

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality, especially among the aging population. The "response-to-injury" model proposed by Dr. Russell Ross in 1999 emphasizes inflammation as a critical factor in atherosclerosis development, with atherosclerotic plaques forming due to endothelial cell (EC) injury, followed by myeloid cell adhesion and invasion into the blood vessel walls. Recent evidence indicates that cancer and its treatments can lead to long-term complications, including CVD. Cellular senescence, a hallmark of aging, is implicated in CVD pathogenesis, particularly in cancer survivors. However, the precise mechanisms linking premature senescence to CVD in cancer survivors remain poorly understood. This article aims to provide mechanistic insights into this association and propose future directions to better comprehend this complex interplay.

3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446100

ABSTRACT

Fibroblast-to-myofibroblast transition (FMT) leads to excessive extracellular matrix (ECM) deposition-a well-known hallmark of fibrotic disease. Transforming growth factor-ß (TGF-ß) is the primary cytokine driving FMT, and this phenotypic conversion is associated with mitochondrial dysfunction, notably a metabolic reprogramming towards enhanced glycolysis. The objective of this study was to examine whether the establishment of favorable metabolic phenotypes in TGF-ß-stimulated fibroblasts could attenuate FMT. The hypothesis was that mitochondrial replenishment of TGF-ß-stimulated fibroblasts would counteract a shift towards glycolytic metabolism, consequently offsetting pro-fibrotic processes. Isolated mitochondria, functionalized with a dextran and triphenylphosphonium (TPP) (Dex-TPP) polymer conjugate, were administered to fibroblasts (MRC-5 cells) stimulated with TGF-ß, and effects on bioenergetics and fibrotic programming were subsequently examined. Results demonstrate that TGF-ß stimulation of fibroblasts led to FMT, which was associated with enhanced glycolysis. Dex-TPP-coated mitochondria (Dex-TPP/Mt) delivery to TGF-ß-stimulated fibroblasts abrogated a metabolic shift towards glycolysis and led to a reduction in reactive oxygen species (ROS) generation. Importantly, TGF-ß-stimulated fibroblasts treated with Dex-TPP/Mt had lessened expression of FMT markers and ECM proteins, as well as reduced migration and proliferation. Findings highlight the potential of mitochondrial transfer, as well as other strategies involving functional reinforcement of mitochondria, as viable therapeutic modalities in fibrosis.


Subject(s)
Fibroblasts , Signal Transduction , Humans , Fibroblasts/metabolism , Fibrosis , Myofibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Phenotype , Mitochondria/metabolism , Transforming Growth Factor beta1/metabolism , Cells, Cultured
4.
Res Sq ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37502965

ABSTRACT

This study establishes the physiological role of Fused in Sarcoma (FUS) in mitochondrial DNA (mtDNA) repair and highlights its implications to the pathogenesis of FUS-associated neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS). Endogenous FUS interacts with and recruits mtDNA Ligase IIIα (mtLig3) to DNA damage sites within mitochondria, a relationship essential for maintaining mtDNA repair and integrity in healthy cells. Using ALS patient-derived FUS mutant cell lines, a transgenic mouse model, and human autopsy samples, we discovered that compromised FUS functionality hinders mtLig3's repair role, resulting in increased mtDNA damage and mutations. These alterations cause various manifestations of mitochondrial dysfunction, particularly under stress conditions relevant to disease pathology. Importantly, rectifying FUS mutations in patient-derived induced pluripotent cells (iPSCs) preserves mtDNA integrity. Similarly, targeted introduction of human DNA Ligase 1 restores repair mechanisms and mitochondrial activity in FUS mutant cells, suggesting a potential therapeutic approach. Our findings unveil FUS's critical role in mitochondrial health and mtDNA repair, offering valuable insights into the mechanisms underlying mitochondrial dysfunction in FUS-associated neurodegeneration.

5.
Circ Res ; 133(1): 25-44, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37264926

ABSTRACT

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Mice , Atherosclerosis/metabolism , Inflammation , Mitogen-Activated Protein Kinase 7/genetics , Mitogen-Activated Protein Kinase 7/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
6.
Bone ; 166: 116598, 2023 01.
Article in English | MEDLINE | ID: mdl-36341949

ABSTRACT

Cutaneous skeletal hypophosphatemia syndrome (CSHS) is an ultra-rare mosaic disorder manifesting as skeletal dysplasia and FGF23-mediated hypophosphatemia, with some experiencing extra-osseous/extra-cutaneous manifestations, including both benign and malignant neoplasms. Like other disorders of FGF23-mediated hypophosphatemia including X-linked hypophosphatemia (XLH) and tumor-induced osteomalacia (TIO), patients with CSHS have low serum phosphorus and active 1,25-dihydroxyvitamin D levels. Current treatment options for patients with CSHS include multiple daily doses of oral phosphorus and one or more daily doses of active vitamin D analog to correct the deficits. Recently, the fully human monoclonal antibody against FGF23 burosumab received US approval for the treatment of XLH and TIO, two rare diseases characterized by FGF23-mediated hypophosphatemia leading to rickets and osteomalacia. Given the similarities between the pathobiologies of these disorders and CSHS, we investigated the impact of burosumab on two patients, one pediatric and one adult, with CSHS who participated in separate, but similarly designed trials. In both the pediatric and adult patients, burosumab therapy was well-tolerated and contributed to clinically meaningful improvements in disease outcomes including normalization of phosphorus metabolism and markers of bone health, and improvements in skeletal abnormalities, fractures, and physical function. Reported adverse events were minimal, with only mild injection site reactions attributed to burosumab therapy. Together, these findings suggest that burosumab therapy is a promising therapeutic option for patients with CSHS.


Subject(s)
Antibodies, Monoclonal, Humanized , Hypophosphatemia , Adult , Child , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/drug therapy , Familial Hypophosphatemic Rickets/metabolism , Fibroblast Growth Factors/metabolism , Hypophosphatemia/drug therapy , Osteomalacia/drug therapy , Phosphorus , Antibodies, Monoclonal, Humanized/therapeutic use
7.
Cells ; 11(22)2022 11 17.
Article in English | MEDLINE | ID: mdl-36429071

ABSTRACT

Accumulating evidence indicates that the APOA1 binding protein (AIBP)-a secreted protein-plays a profound role in lipid metabolism. Interestingly, AIBP also functions as an NAD(P)H-hydrate epimerase to catalyze the interconversion of NAD(P)H hydrate [NAD(P)HX] epimers and is renamed as NAXE. Thus, we call it NAXE hereafter. We investigated its role in NAD(P)H-involved metabolism in murine cardiomyocytes, focusing on the metabolism of hexose, lipids, and amino acids as well as mitochondrial redox function. Unbiased metabolite profiling of cardiac tissue shows that NAXE knockout markedly upregulates the ketone body 3-hydroxybutyric acid (3-HB) and increases or trends increasing lipid-associated metabolites cholesterol, α-linolenic acid and deoxycholic acid. Paralleling greater ketone levels, ChemRICH analysis of the NAXE-regulated metabolites shows reduced abundance of hexose despite similar glucose levels in control and NAXE-deficient blood. NAXE knockout reduces cardiac lactic acid but has no effect on the content of other NAD(P)H-regulated metabolites, including those associated with glucose metabolism, the pentose phosphate pathway, or Krebs cycle flux. Although NAXE is present in mitochondria, it has no apparent effect on mitochondrial oxidative phosphorylation. Instead, we detected more metabolites that can potentially improve cardiac function (3-HB, adenosine, and α-linolenic acid) in the Naxe-/- heart; these mice also perform better in aerobic exercise. Our data reveal a new role of NAXE in cardiac ketone and lipid metabolism.


Subject(s)
Ketones , NAD , Animals , Mice , alpha-Linolenic Acid , NAD/metabolism , Racemases and Epimerases , Cell Respiration
8.
Transplant Direct ; 8(10): e1367, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36204182

ABSTRACT

Islet and ß-cell function is intrinsic to glucose homeostasis. Pancreatectomy and islet autotransplantation (PIAT) for chronic pancreatitis (CP) treatment is a useful model for assessing islet function in the absence of immune-suppression and to perform extensive presurgical metabolic evaluations not possible from deceased donors. We recently showed that in CP-PIAT patients, preoperative islet identity loss presented with postoperative glycemic loss. Here, we examine presurgical islet function using Homeostatic Model Assessment-Beta Cell Function (%) (HOMA-ß) and glycemic variables and compared them with postsurgical insulin independence and their predicted alignment with Secretory Unit of Islet Transplant Objects (SUITO) and beta cell score after transplantation (BETA-2) scores. Methods: Seven CP-PIAT patients were assessed for ß-cell function metrics, including pretransplant and 6-mo posttransplant HOMA-ß using insulin and C-peptide and evaluations of proposed insulin independence by SUITO and BETA-2 graft function equations. These were compared with oral glucose tolerance tests and pancreas histological samples taken at the time of transplant, examined for ß-cell maturity markers. Results: Pre-PIAT, HOMA-ß (60%-100%) associated with post-PIAT insulin independence. This association was only moderately supported by post-PIAT SUITO threshold scores (≥26) but robustly by BETA-2 scores (≥16.2). Appropriate posttransplant oral glucose tolerance test curves were found in those patients with normal pretransplant HOMA-ß values. Preoperative low serological ß-cell function was displayed by concurrent evidence of ß-cell identity alterations including colocalization of insulin and glucagon, loss of urocortin-3, and increased intra-islet vimentin in patients who were insulin-dependent post-PIAT. Conclusions: These data encourage HOMA-ß assessment before PIAT for estimating posttransplant insulin independence.

9.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36293021

ABSTRACT

The transformation of prostatic epithelial cells to prostate cancer (PCa) has been characterized as a transition from citrate secretion to citrate oxidation, from which one would anticipate enhanced mitochondrial complex I (CI) respiratory flux. Molecular mechanisms for this transformation are attributed to declining mitochondrial zinc concentrations. The unique metabolic properties of PCa cells have become a hot research area. Several publications have provided indirect evidence based on investigations using pre-clinical models, established cell lines, and fixed or frozen tissue bank samples. However, confirmatory respiratory analysis on fresh human tissue has been hampered by multiple difficulties. Thus, few mitochondrial respiratory assessments of freshly procured human PCa tissue have been published on this question. Our objective is to document relative mitochondrial CI and complex II (CII) convergent electron flow to the Q-junction and to identify electron transport system (ETS) alterations in fresh PCa tissue. The results document a CII succinate: quinone oxidoreductase (SQR) dominant succinate oxidative flux model in the fresh non-malignant prostate tissue, which is enhanced in malignant tissue. CI NADH: ubiquinone oxidoreductase activity is impaired rather than predominant in high-grade malignant fresh prostate tissue. Given these novel findings, succinate and CII are promising targets for treating and preventing PCa.


Subject(s)
Prostatic Neoplasms , Succinic Acid , Male , Humans , Succinic Acid/metabolism , Electron Transport Complex II/metabolism , Reactive Oxygen Species/metabolism , Ubiquinone/metabolism , NAD/metabolism , Electron Transport Complex I/metabolism , Electron Transport , Citrates , Zinc/metabolism
10.
Front Immunol ; 13: 966364, 2022.
Article in English | MEDLINE | ID: mdl-36090981

ABSTRACT

FOXP3 is the lineage-defining transcription factor for Tregs, a cell type critical to immune tolerance, but the mechanisms that control FOXP3 expression in Tregs remain incompletely defined, particularly as it relates to signals downstream of TCR and CD28 signaling. Herein, we studied the role of IRF4 and BATF3, two transcription factors upregulated upon T cell activation, to the conversion of conventional CD4+ T cells to FOXP3+ T cells (iTregs) in vitro. We found that IRF4 must partner with BATF3 to bind to a regulatory region in the Foxp3 locus where they cooperatively repress FOXP3 expression and iTreg induction. In addition, we found that interactions of these transcription factors are necessary for glycolytic reprogramming of activated T cells that is antagonistic to FOXP3 expression and stability. As a result, Irf4 KO iTregs show increased demethylation of the critical CNS2 region in the Foxp3 locus. Together, our findings provide important insights how BATF3 and IRF4 interactions integrate activating signals to control CD4+ cell fate decisions and govern Foxp3 expression.


Subject(s)
Forkhead Transcription Factors , Transcription Factor AP-1 , CD4-Positive T-Lymphocytes/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , T-Lymphocytes, Regulatory , Transcription Factor AP-1/metabolism
11.
Ageing Res Rev ; 80: 101687, 2022 09.
Article in English | MEDLINE | ID: mdl-35843590

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to impact our lives by causing widespread illness and death and poses a threat due to the possibility of emerging strains. SARS-CoV-2 targets angiotensin-converting enzyme 2 (ACE2) before entering vital organs of the body, including the brain. Studies have shown systemic inflammation, cellular senescence, and viral toxicity-mediated multi-organ failure occur during infectious periods. However, prognostic investigations suggest that both acute and long-term neurological complications, including predisposition to irreversible neurodegenerative diseases, can be a serious concern for COVID-19 survivors, especially the elderly population. As emerging studies reveal sites of SARS-CoV-2 infection in different parts of the brain, potential causes of chronic lesions including cerebral and deep-brain microbleeds and the likelihood of developing stroke-like pathologies increases, with critical long-term consequences, particularly for individuals with neuropathological and/or age-associated comorbid conditions. Our recent studies linking the blood degradation products to genome instability, leading to cellular senescence and ferroptosis, raise the possibility of similar neurovascular events as a result of SARS-CoV-2 infection. In this review, we discuss the neuropathological consequences of SARS-CoV-2 infection in COVID survivors, focusing on possible hemorrhagic damage in brain cells, its association to aging, and the future directions in developing mechanism-guided therapeutic strategies.


Subject(s)
COVID-19 , Nervous System Diseases , Aged , Brain/metabolism , COVID-19/complications , Hemorrhage , Humans , Nervous System Diseases/pathology , SARS-CoV-2
12.
J Nucl Med ; 63(11): 1708-1714, 2022 11.
Article in English | MEDLINE | ID: mdl-35210298

ABSTRACT

Despite the advance of immunotherapy, only a small subset of patients gains long-term survival benefit. This fact represents a compelling rationale to develop immuno-PET imaging that can predict tumor response to immunotherapy. An increasing number of studies have shown that tumor-specific major histocompatibility complex II (tsMHC-II) is associated with improved responses to targeted immunotherapy. The aim of this study was to investigate the potential of tsMHC-II protein expression and its dynamic change on treatment with interferon γ (IFNγ) as a new target for immuno-PET to predict response to immunotherapy. Methods: Major histocompatibility complex II (MHC-II) antibody was radiolabeled with DOTA-chelated 64Cu to derive an MHC-II immuno-PET tracer. Two melanoma models (B16SIY, B16F10) that are respondent and nonrespondent, respectively, to PD1/PD-L1 checkpoint inhibitor were used. Both tumor models were treated with anti-PD1 and IFNγ, enabling observation of dynamic changes in tsMHC-II. Small-animal PET imaging, biodistribution, and histologic studies were performed to validate the correlation of tsMHC-II with the tumor response to the immunotherapy. Results: Fluorescence-activated cell sorting analysis of the 2 tumors supported the consensual recognition of tsMHC-II correlated with the tumor response to the immunotherapy. The in vivo PET imaging revealed higher basal levels of tsMHC-II in the responder, B16SIY, than in the nonresponder, B16F10. When treated with anti-PD1 antibody in animals, B16SIY tumors displayed a sensitive increase in tsMHC-II compared with B16F10 tumors. In IFNγ stimulation groups, the greater magnitude of tsMHC-II was further amplified when the IFNγ signaling was activated in the B16SIY tumors, as IFNγ signaling positively upregulates tsMHC-II in the tumor immunity. Subsequent histopathologic analysis supported the correlative characteristics of tsMHC-II with tumor immunity and response to cancer immunotherapy. Conclusion: Collectively, the predictive value of tsMHC-II immuno-PET was validated for stratifying tumor immunotherapy responders versus nonresponders. Monitoring sensitivity of tsMHC-II to IFNγ stimulation may provide an effective strategy to predict the tumor response to immunotherapy.


Subject(s)
Melanoma , Multiple Myeloma , Animals , Programmed Cell Death 1 Receptor , Tissue Distribution , Immunotherapy/methods , Positron-Emission Tomography/methods , Immunologic Factors
13.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162934

ABSTRACT

Calcium signaling plays important roles in physiological and pathological conditions, including cutaneous melanoma, the most lethal type of skin cancer. Intracellular calcium concentration ([Ca2+]i), cell membrane calcium channels, calcium related proteins (S100 family, E-cadherin, and calpain), and Wnt/Ca2+ pathways are related to melanogenesis and melanoma tumorigenesis and progression. Calcium signaling influences the melanoma microenvironment, including immune cells, extracellular matrix (ECM), the vascular network, and chemical and physical surroundings. Other ionic channels, such as sodium and potassium channels, are engaged in calcium-mediated pathways in melanoma. Calcium signaling serves as a promising pharmacological target in melanoma treatment, and its dysregulation might serve as a marker for melanoma prediction. We documented calcium-dependent endoplasmic reticulum (ER) stress and mitochondria dysfunction, by targeting calcium channels and influencing [Ca2+]i and calcium homeostasis, and attenuated drug resistance in melanoma management.


Subject(s)
Calcium Signaling , Drug Resistance, Neoplasm , Melanoma/metabolism , Endoplasmic Reticulum Stress , Gene Expression Regulation, Neoplastic , Humans , Tumor Microenvironment , Wnt Signaling Pathway
14.
J Thorac Cardiovasc Surg ; 164(1): 158-166.e1, 2022 07.
Article in English | MEDLINE | ID: mdl-33148444

ABSTRACT

OBJECTIVE: Cardiac paraganglioma is a rare tumor that most surgeons have limited experience treating. The objective of this study is to examine the management and outcomes for cardiac paraganglioma treatment when cared for by a multidisciplinary cardiac tumor team. METHODS: We reviewed our institutionally approved cardiac tumor database from March 2004 to June 2020 for cardiac paraganglioma. These prospectively collected data were retrospectively reviewed. Patient characteristics were presented for individual patients and as summary statistics. Demographic and clinical data were also reported as median and interquartile range for continuous variables and frequencies and proportions for categoric variables. Kaplan-Meier curves were used to depict the patient survival from surgery. RESULTS: There were 21 cases of primary cardiac paraganglioma, 19 of whom had surgical resection with 3 refusing offered surgery. Of 19 resected tumors, 13 originated from the left atrium and 6 originated from the roots of the pulmonary artery and the aorta. Complex procedures were required, including aortic and pulmonary root replacement and 8 autotransplants. All tumors had complete gross resection with no identifiable disease left behind, but 4 of these had microscopically positive margins. None of the patients had local recurrence of disease. There was 1 case of metastatic paraganglioma with death at 4 years postsurgery. Operative mortality was 10.6%. Survival from surgery was 88.2%, 71.8%, and 71.8% and 1, 5, and 10 years, respectively. CONCLUSIONS: Cardiac paraganglioma presents a surgical challenge. Mortality and long-term survival after surgical resection are acceptable but may require complex resection and reconstruction.


Subject(s)
Heart Neoplasms , Paraganglioma, Extra-Adrenal , Paraganglioma , Heart Atria/pathology , Heart Neoplasms/diagnostic imaging , Heart Neoplasms/surgery , Humans , Paraganglioma/diagnostic imaging , Paraganglioma/pathology , Paraganglioma/surgery , Paraganglioma, Extra-Adrenal/pathology , Retrospective Studies
15.
Redox Biol ; 47: 102132, 2021 11.
Article in English | MEDLINE | ID: mdl-34619528

ABSTRACT

The incidence of cardiovascular disease (CVD) is higher in cancer survivors than in the general population. Several cancer treatments are recognized as risk factors for CVD, but specific therapies are unavailable. Many cancer treatments activate shared signaling events, which reprogram myeloid cells (MCs) towards persistent senescence-associated secretory phenotype (SASP) and consequently CVD, but the exact mechanisms remain unclear. This study aimed to provide mechanistic insights and potential treatments by investigating how chemo-radiation can induce persistent SASP. We generated ERK5 S496A knock-in mice and determined SASP in myeloid cells (MCs) by evaluating their efferocytotic ability, antioxidation-related molecule expression, telomere length, and inflammatory gene expression. Candidate SASP inducers were identified by high-throughput screening, using the ERK5 transcriptional activity reporter cell system. Various chemotherapy agents and ionizing radiation (IR) up-regulated p90RSK-mediated ERK5 S496 phosphorylation. Doxorubicin and IR caused metabolic changes with nicotinamide adenine dinucleotide depletion and ensuing mitochondrial stunning (reversible mitochondria dysfunction without showing any cell death under ATP depletion) via p90RSK-ERK5 modulation and poly (ADP-ribose) polymerase (PARP) activation, which formed a nucleus-mitochondria positive feedback loop. This feedback loop reprogramed MCs to induce a sustained SASP state, and ultimately primed MCs to be more sensitive to reactive oxygen species. This priming was also detected in circulating monocytes from cancer patients after IR. When PARP activity was transiently inhibited at the time of IR, mitochondrial stunning, priming, macrophage infiltration, and coronary atherosclerosis were all eradicated. The p90RSK-ERK5 module plays a crucial role in SASP-mediated mitochondrial stunning via regulating PARP activation. Our data show for the first time that the nucleus-mitochondria positive feedback loop formed by p90RSK-ERK5 S496 phosphorylation-mediated PARP activation plays a crucial role of persistent SASP state, and also provide preclinical evidence supporting that transient inhibition of PARP activation only at the time of radiation therapy can prevent future CVD in cancer survivors.


Subject(s)
Coronary Artery Disease , Mitogen-Activated Protein Kinase 7 , Poly(ADP-ribose) Polymerases , Adenosine Diphosphate/metabolism , Animals , Coronary Artery Disease/metabolism , Feedback , Humans , Mice , Mitochondria/metabolism , Phenotype , Phosphorylation , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Ribose/metabolism
16.
Pharmaceutics ; 13(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066184

ABSTRACT

Melanoma is one of the most malignant skin cancers that require comprehensive therapies, including chemotherapy. A plant-derived drug, plumbagin (PLB), exhibits an anticancer property in several cancers. We compared the cytotoxic and metabolic roles of PLB in A375 and SK-MEL-28 cells, each with different aggressiveness. In our results, they were observed to have distinctive mitochondrial respiratory functions. The primary reactive oxygen species (ROS) source of A375 can be robustly attenuated by cell membrane permeabilization. A375 cell viability and proliferation, migration, and apoptosis induction are more sensitive to PLB treatment. PLB induced metabolic alternations in SK-MEL-28 cells, which included increasing mitochondrial oxidative phosphorylation (OXPHOS), mitochondrial ATP production, and mitochondrial mass. Decreasing mitochondrial OXPHOS and total ATP production with elevated mitochondrial membrane potential (MMP) were observed in PLB-induced A375 cells. PLB also induced ROS production and increased proton leak and non-mitochondria respiration in both cells. This study reveals the relationship between metabolism and cytotoxic effects of PLB in melanoma. PLB displays stronger cytotoxic effects on A375 cells, which exhibit lower respiratory function than SK-MEL-28 cells with higher respiratory function, and triggers cell-specific metabolic changes in accordance with its cytotoxic effects. These findings indicate that PLB might serve as a promising anticancer drug, targeting metabolism.

17.
J Med Chem ; 64(7): 4020-4033, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33745280

ABSTRACT

Abnormally high levels of class I histone deacetylases (HDACs) are associated with triple-negative breast cancer (TNBC) proliferation, malignant transformation, and poor prognosis of patients. Herein, we report a near-infrared imaging probe for TNBC detection via visualizing class I HDACs. Conjugating Cy5.5 to a cyclic depsipeptide inhibitor, we obtained the probe (20-Cy5.5) that retained desirable class I HDAC affinity and selectivity. Then, this probe could visualize epigenetic changes by class I HDACs in TNBC MDA-MB-231 cells and in xenograft tumor models in real time. Treatment with suberoylanilide hydroxamic acid (SAHA) significantly reduced the uptake of the probe in tumors, suggesting its potential use in evaluation of therapeutic responses of HDACi-mediated therapy. Moreover, 20-Cy5.5 could detect class I HDAC expression in TNBC lung metastasis. This novel NIR probe that achieves tumor class I HDAC imaging not only leads to a better understanding of epigenetic regulation in tumors but also has great potential for improving the TNBC diagnosis and treatment.


Subject(s)
Carbocyanines/pharmacology , Depsipeptides/pharmacology , Epigenesis, Genetic/physiology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Triple Negative Breast Neoplasms/metabolism , Animals , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Carbocyanines/chemical synthesis , Cell Line, Tumor , Depsipeptides/chemical synthesis , Female , Fluorometry , Gene Expression Regulation, Neoplastic/physiology , Heterografts/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylases/analysis , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice, Nude , Triple Negative Breast Neoplasms/pathology , Vorinostat/pharmacology
18.
J Med Chem ; 64(5): 2705-2713, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33646782

ABSTRACT

Despite advances in targeted therapies, the prognosis for patients with triple-negative breast cancer (TNBC) is poor because there are few actionable molecular targets. The dependence of solid tumor growth on angiogenesis prompted our development of angiogenic-receptor-targeted radionuclide therapy (TRT) to treat TNBC by targeted delivery of therapeutic doses of ionizing radiation to tumors. A high-affinity vascular endothelial growth factor receptor (VEGFR)-targeted agent, diZD, was synthesized and labeled with 177Lu and 64Cu by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator giving the TRT agent, 177Lu-DOTA-diZD, and PET imaging agent, 64Cu-DOTA-diZD. We showed that "64Cu/177Lu"-DOTA-diZD radiotracers are a promising theranostic pair for TNBC. 4T1-bearing mice treated with 177Lu-DOTA-diZD-based TRT survived with a median of 28 days, which was significantly longer than that of control mice as 18 days. Anti-PD1 immunotherapy resulted in a shorter median survival of 16 days. This work presents for the first time that small-molecule VEGFR-oriented TRT is a promising therapeutic option to treat "immunogenic cold" TNBC.


Subject(s)
Antineoplastic Agents/therapeutic use , Coordination Complexes/therapeutic use , Radiopharmaceuticals/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Copper Radioisotopes/chemistry , Female , Heterocyclic Compounds, 1-Ring/chemical synthesis , Heterocyclic Compounds, 1-Ring/therapeutic use , Lutetium/chemistry , Mice, Inbred BALB C , Positron-Emission Tomography , Precision Medicine/methods , Radioisotopes/chemistry , Radiopharmaceuticals/chemical synthesis , Receptors, Vascular Endothelial Growth Factor/metabolism , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/metabolism , Tumor Protein, Translationally-Controlled 1
19.
Redox Biol ; 37: 101614, 2020 10.
Article in English | MEDLINE | ID: mdl-32863187

ABSTRACT

Accumulation of senescent cells has a causative role in the pathology of age-related disorders including atherosclerosis (AS) and cardiovascular diseases (CVDs). However, the concept of senescence is now drastically changing, and the new concept of senescence-associated reprogramming/stemness has emerged, suggesting that senescence is not merely related to "cell cycle arrest" or halting various cellular functions. It is well known that disturbed flow (D-flow) accelerates pre-mature aging and plays a significant role in the development of AS. We will discuss in this review that pre-mature aging induced by D-flow is not comparable to time-dependent aging, particularly with a focus on the possible involvement of senescence-associated secretory phenotype (SASP) in senescence-associated reprogramming/stemness, or increasing cell numbers. We will also present our outlook of nicotinamide adenine dinucleotides (NAD)+ deficiency-induced mitochondrial reactive oxygen species (mtROS) in evoking SASP by activating DNA damage response (DDR). MtROS plays a key role in developing cross-talk between nuclear-mitochondria, SASP, and ultimately atherosclerosis formation. Although senescence induced by time and various stress factors is a classical concept, we wish that the readers will see the undergoing Copernican-like change in this concept, as well as to recognize the significant contrast between pre-mature aging induced by D-flow and time-dependent aging.


Subject(s)
Atherosclerosis , Cellular Senescence , Atherosclerosis/genetics , Humans , Mitochondria , NAD
20.
Future Med Chem ; 12(4): 311-323, 2020 02.
Article in English | MEDLINE | ID: mdl-31782319

ABSTRACT

Aim: Class I histone deacetylases (HDACs) are considered to be promising anticancer targets, but selective inhibition of class I HDAC isoforms remains a challenge. Methods & results: Previously, we obtained a selective class I HDAC inhibitor 9 based on a macrocyclic HDAC inhibitor Romidpesin. As our continuous efforts, a library of novel cyclicdepsipeptides based on 9 was established using a convergent synthesis strategy. The most active compounds 10, 16 and 19 selectively inhibit class I HDACs and exhibit promising nanomolar antiproliferative activities against several cancer cell lines with excellent selectivity toward cancer cells over normal cells. Besides, compound 10 demonstrates excellent antitumor effects in human prostate carcinoma PC3 xenograft models with no observed toxicity. Conclusion: These cyclicdepsipeptides show great therapeutic potential as novel anticancer agents for clinical translation.


Subject(s)
Antineoplastic Agents/pharmacology , Depsipeptides/pharmacology , Drug Discovery , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Depsipeptides/chemical synthesis , Depsipeptides/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Conformation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...