Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Toxicol Appl Pharmacol ; 461: 116400, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36702314

ABSTRACT

Alveolar macrophages (AM) are integral to maintaining homeostasis within the lungs following exposure to inhaled particles. However, due to the high animal number requirements for in vitro research with primary AM, there remains a need for validated cell models that replicate alveolar macrophages in form and function to better understand the mechanisms that contribute to particle-induced inflammation and disease. A novel, easily adaptable, culture model that facilitates the continued expansion of murine alveolar macrophages for several months, termed murine ex vivo cultured AM (mexAM) has been recently described. Therefore, the present work evaluated the use of mexAMs as a suitable model for primary AM interactions with nano- and micro-sized particles. mexAM displayed a comparable profile of functional phenotype gene expression as primary AM and similar particle uptake capabilities. The NLRP3 inflammasome-driven IL-1ß inflammatory response to crystalline silica and various nanoparticles was also assessed, as well as the effects of cationic amphiphilic drugs to block particle-induced inflammation. For all endpoints, mexAM showed a comparable response to primary AM. Altogether, the present work supports the use of mexAM as a validated replacement for primary AM cultures thereby reducing animal numbers and serving as an effective model for mechanistic investigation of inflammatory pathways in particle-induced respiratory disease.


Subject(s)
Lung , Macrophages, Alveolar , Mice , Animals , Inflammation/chemically induced , Inflammation/metabolism , Silicon Dioxide/chemistry
2.
Inflammation ; 45(2): 677-694, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34655011

ABSTRACT

Acute and chronic inflammation are vital contributing factors to pulmonary diseases which can be triggered by exposure to occupational and man-made particles; however, there are no established treatments. One potential treatment shown to have anti-inflammatory capabilities is the dietary supplement docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid found in fish oil. DHA's anti-inflammatory mechanisms are unclear for particle-induced inflammation; therefore, this study evaluated DHA as a prophylactic treatment for semi-acute and chronic particle-induced inflammation in vivo. Balb/c mice were fed a control or 1% DHA diet and exposed to dispersion media, an inflammatory multi-walled carbon nanotube (MWCNT), or crystalline silica (SiO2) either once (semi-acute) or once a week for 4 weeks (chronic). The hypothesis was that DHA will decrease pulmonary inflammatory markers in response to particle-induced inflammation. Results indicated that DHA had a trending anti-inflammatory effect in mice exposed to MWCNT. There was a general decrease in inflammatory signals within the lung lavage fluid and upregulation of M2c macrophage gene expression in the spleen tissue. In contrast, mice exposed to SiO2 while on the DHA diet significantly increased most inflammatory markers. However, DHA stabilized the phagolysosomal membrane upon prolonged treatment. This indicated that DHA treatment may depend upon certain inflammatory particle exposures as well as the length of the exposure.


Subject(s)
Docosahexaenoic Acids , Pneumonia , Animals , Diet , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Mice , Mice, Inbred BALB C , Pneumonia/chemically induced , Pneumonia/drug therapy , Silicon Dioxide
3.
Micron ; 153: 103193, 2022 02.
Article in English | MEDLINE | ID: mdl-34929618

ABSTRACT

Biomaterials have a great potential to improve human health, however in vitro and in vivo studies are necessary to provide information on their efficacy and safety. This study reports on a comprehensive evaluation of core-shell electrospun fibers loaded with silver nanoparticles (Ag NP) where the delivery rate was controlled by different sizes of Ag NP and thermoresponsive poly(n-isopropylacrylamide) (PNIPAM) hydrogel particles. Fiber meshes also contain zinc oxide nanoparticles (ZnO NP), to improve pore structure for controlled release of Ag NP. In vitro cytotoxicity studies using cultured human A549 epithelial cells demonstrated that the ZnO NP component, which is known to cause cytotoxicity, of the fiber meshes did cause measurable cell death. In vitro antibacterial efficacy of the fiber meshes was shown with rapid and efficient growth inhibition in E. coli bacterial culture. Fiber meshes were implanted subcutaneously for up to 27 days in male and female C57BL/6 mice to evaluate the in vivo drug release and biocompatibility. Hyperspectral microscopy was used as an advanced tool to determine precise location of released Ag NP into the skin compared to the conventional tissue staining methods. Results suggested that Ag NP were continuously released over 27 days of implantation in mice. Hyperspectral imaging revealed that released Ag NP dispersed in the dermis of male mice, however, Ag NP accumulated in the hair follicles of female mice (Figure). Mice implanted with fiber meshes containing ZnO NP had better hair regrowth and wound healing, which was in contrast to in vitro cytotoxicity results. These findings suggest that these newly developed fiber meshes can have unique long-term release of drugs loaded in the fiber core and appear to be biocompatible. The differences in the sex-bias outcome suggest the opportunity for development of sex-specific drug delivery systems.


Subject(s)
Metal Nanoparticles , Nanoparticles , Pharmaceutical Preparations , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli , Female , Male , Metal Nanoparticles/toxicity , Mice , Mice, Inbred C57BL , Microscopy , Sex Characteristics , Silver/pharmacology
4.
Part Fibre Toxicol ; 18(1): 16, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33771183

ABSTRACT

BACKGROUND: A very pure multi-walled carbon nanotube (MWCNT) that was shown to have very low toxicity in vitro, was evaluated for lung and systemic effects and distribution following inhalation exposure. METHODS: B6C3F1/N mice were exposed to varying doses (0, 0.06, 0.2, and 0.6 mg/m3) of the (99.1% carbon) MWCNT by inhalation for 30 days (excluding weekends). Ten days following the last exposure, the lungs and spleen were harvested and processed for histology and immune cell population assessment. In addition, lung lavage cells and fluid were analyzed. Stimulated Raman scattering (SRS) was used to identify particles in the lungs, spleen, kidneys, liver, mediastinal and brachial lymph nodes, and olfactory bulb. Splenic tissue sections were stained with hematoxylin and eosin (H&E) for light microscopic histopathology assessment. Blood plasma was analyzed for cytokines and cathepsins. A section of the spleen was processed for RNA isolation and relative gene expression for 84 inflammation-related cytokines/chemokines. RESULTS: Following MWCNT exposure, particles were clearly evident in the lungs, spleens, lymph nodes and olfactory bulbs, (but not livers or kidneys) of exposed mice in a dose-dependent manner. Examination of the lavaged lung cells was unremarkable with no significant inflammation indicated at all particle doses. In contrast, histological examination of the spleen indicated the presence of apoptotic bodies within T cells regions of the white pulp area. Isolated splenic leukocytes had significant changes in various cells including an increased number of proinflammatory CD11b+Ly6C+ splenic cells. The gene expression studies confirmed this observation as several inflammation-related genes were upregulated particularly in the high dose exposure (0.6 mg/m3). Blood plasma evaluations showed a systemic down-regulation of inflammatory cytokines and a dose-dependent up-regulation of lysosomal cathepsins. CONCLUSIONS: The findings in the lungs were consistent with our hypothesis that this MWCNT exposure would result in minimal lung inflammation and injury. However, the low toxicity of the MWCNT to lung macrophages may have contributed to enhanced migration of the MWCNT to the spleen through the lymph nodes, resulting in splenic toxicity and systemic changes in inflammatory mediators.


Subject(s)
Inhalation Exposure , Nanotubes, Carbon , Particulate Matter/toxicity , Pneumonia , Animals , Bronchoalveolar Lavage Fluid , Lung , Mice , Mice, Inbred Strains
5.
Inflamm Res ; 70(3): 359-373, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33566171

ABSTRACT

OBJECTIVE AND DESIGN: The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been reported to suppress inflammation. Pulmonary inflammation can be directly linked to exposure of various occupational and man-made particles leading to pulmonary diseases. Therapeutic treatments are lacking for particle-induced pulmonary inflammation. These studies evaluated DHA as a therapeutic treatment for semi-acute and chronic particle-induced pulmonary inflammation. METHODS: Balb/c mice were oropharyngeal instilled with hydrophobic multi-walled carbon nanotube (MWCNT) or hydrophilic crystalline silica (SiO2) either as one instillation (semi-acute) or once a week for 4 weeks (chronic). One week later, the mice were placed on either a control or 1% DHA-containing diet for 3 weeks (semi-acute) or 12 weeks (chronic). Mice were assessed for inflammatory signaling within the lung lavage fluid, impact on phagolysosomal membrane permeability, shifts of macrophage phenotype gene expression (M1, M2a, M2b, and M2c), and pulmonary histopathology. RESULTS: DHA increased pulmonary inflammatory markers and lung pathology when mice were exposed to SiO2. There were trending decreases of inflammatory markers for MWCNT-exposed mice with DHA treatment, however, mostly not statistically significant. CONCLUSION: The anti-inflammatory benefits of DHA treatment depend upon the type of inflammatory particle, magnitude of inflammation, and duration of treatment.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Dietary Supplements , Docosahexaenoic Acids/therapeutic use , Inflammation/diet therapy , Lung Diseases/diet therapy , Animals , Cells, Cultured , Cytokines/immunology , Female , Inflammation/chemically induced , Inflammation/immunology , Inflammation/pathology , Lung/drug effects , Lung/immunology , Lung/pathology , Lung Diseases/chemically induced , Lung Diseases/immunology , Lung Diseases/pathology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Male , Mice, Inbred BALB C , Nanotubes, Carbon , Phenotype , Silicon Dioxide
6.
J Toxicol Environ Health A ; 84(4): 152-172, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33148135

ABSTRACT

Inhalation of particles results in pulmonary inflammation; however, treatments are currently lacking. Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid shown to exhibit anti-inflammatory capabilities. The impact of DHA on particle-induced inflammation is unclear; therefore, the aim of this study was to examine the hypothesis that DHA downregulates macrophage inflammatory responses by altering phagolysosomal membrane permeability (LMP) and shifting macrophage phenotype. Isolated Balb/c alveolar macrophages (AM) were polarized into M1, M2a, M2b, or M2c phenotypes in vitro, treated with DHA, and exposed to a multi-walled carbon nanotube (MWNCT) or crystalline silica (SiO2). Results showed minimal cytotoxicity, robust effects for silica particle uptake, and LMP differences between phenotypes. Docosahexaenoic acid prevented these effects to the greatest extent in M2c phenotype. To determine if DHA affected inflammation similarly in vivo, Balb/c mice were placed on a control or 1% DHA diet for 3 weeks, instilled with the same particles, and assessed 24 hr following instillation. Data demonstrated that in contrast to in vitro findings, DHA increased pulmonary inflammation and LMP. These results suggest that pulmonary responses in vivo may not necessarily be predicted from single-cell responses in vitro.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cell Membrane Permeability/drug effects , Docosahexaenoic Acids/pharmacology , Lysosomes/drug effects , Macrophages/drug effects , Particulate Matter/toxicity , Phagosomes/drug effects , Animals , Cell Membrane Permeability/physiology , Down-Regulation , Female , Lysosomes/physiology , Macrophages/physiology , Male , Mice , Mice, Inbred BALB C , Phagosomes/physiology
7.
Inhal Toxicol ; 32(1): 24-38, 2020 01.
Article in English | MEDLINE | ID: mdl-32028803

ABSTRACT

Objective: In this study, we compared in vitro and in vivo bioactivity of nitrogen-doped multi-walled carbon nanotubes (NDMWCNT) to MWCNT to test the hypothesis that nitrogen doping would alter bioactivity.Materials and Methods: High-resolution transmission electron microscopy (TEM) confirmed the multilayer structure of MWCNT with an average layer distance of 0.36 nm, which was not altered by nitrogen doping: the nanomaterials had similar widths and lengths. In vitro studies with THP-1 cells and alveolar macrophages from C57BL/6 mice demonstrated that NDMWCNT were less cytotoxic and stimulated less IL-1ß release compared to MWCNT. For in vivo studies, male C57BL/6J mice received a single dose of dispersion medium (DM), 2.5, 10 or 40 µg/mouse of NDMWCNT, or 40 µg/mouse of MWCNT by oropharyngeal aspiration. Animals were euthanized between 1 and 7 days post-exposure for whole lung lavage (WLL) studies.Results and Discussion: NDMWCNT caused time- and dose-dependent pulmonary inflammation. However, it was less than that caused by MWCNT. Activation of the NLRP3 inflammasome was assessed in particle-exposed mice by determining cytokine production in WLL fluid at 1 day post-exposure. Compared to DM-exposed mice, IL-1ß and IL-18 were significantly increased in MWCNT- and NDMWCNT-exposed mice, but the increase caused by NDMWCNT was less than MWCNT. At 56 days post-exposure, histopathology determined lung fibrosis in MWCNT-exposed mice was greater than NDMWCNT-exposed mice.Conclusions: These data indicate nitrogen doping of MWCNT decreases their bioactivity, as reflected with lower in vitro and in vivo toxicity inflammation and lung disease. The lower activation of the NLRP3 inflammasome may be responsible. Abbreviations: NDMWCNT: nitrogen-doped multi-walled carbon nanotubes; MWCNT: multi-walled carbon nanotubes; TEM: transmission electron microscopy; HRTEM: high resolution transmission electron microscopy; IL-1ß: interleukin-1ß; DM: dispersion medium; WLL: whole lung lavage; IL-18: interleukin-18; GSD: geometric standard deviation; XPS: X-ray photoelectron spectroscopy; SEM: standard error of the mean; PMA: phorbol 12-myristate 13-acetate; LPS: lipopolysacharride; LDH: lactate dehydrogenase; AM: alveolar macrophage; PMN: polymorphonuclear leukocyte.


Subject(s)
Inhalation Exposure/adverse effects , Lung/drug effects , Macrophages, Alveolar/drug effects , Nanotubes, Carbon/toxicity , Nitrogen/toxicity , Pneumonia/chemically induced , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/analysis , Dose-Response Relationship, Drug , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Lung/immunology , Lung/pathology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/pathology , Male , Mice, Inbred C57BL , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Particle Size , Pneumonia/immunology , Pneumonia/pathology , Surface Properties , THP-1 Cells , Time Factors
8.
Chem Res Toxicol ; 32(8): 1545-1553, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31265265

ABSTRACT

Diversity in physicochemical properties of engineered multiwalled carbon nanotubes (MWCNTs) increases the complexity involved in interpreting toxicity studies of these materials. Studies indicate that epigenetic changes could be at least partially involved in MWCNTs-induced pro-inflammatory and fibrotic lung pathology. Therefore, we examined distinct methylation changes in response to MWCNTs of varied sizes to identify potential epigenetic biomarkers of MWCNTs exposure and disease progression. C57BL/6 mice were exposed via oropharyngeal instillation to a single dose (50 µg) to one of three differently sized MWCNTs: "narrow short" (NS), "wide short" (WS), and "narrow long" (NL). Vehicle-treated control mice received dispersion media (DM) only. Whole lung lavage fluid (LLF) and lung tissue were collected 24 h and 7 days postexposure to evaluate pro-inflammatory cytokines, epigenetic, or histological responses at acute and subchronic intervals, respectively. Luminometric methylation assay and pyrosequencing were used to measure global DNA methylation as well as promoter methylation of inflammation and fibrosis-related genes, respectively. Pro-inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, were measured using enzyme-linked immunosorbant assay, while airway thickening and interstitial collagen accumulation were measured in 7-day lung tissue using laser scanning cytometry. Distinct patterns of methylation (i.e., IL-1ß, IL-6, and TNF-α) among the different sized MWCNTs at 24 h postexposure corresponded to some pro-inflammatory cytokine measurements from whole LLF. Fibrosis-related gene, Thy-1, was significantly hypermethylated after exposures to WS and NL MWCNTs, while only NL MWCNTs induced significantly lower global DNA methylation. After 7 days, a hierarchy in airway thickness and interstitial collagen deposition was observed: NS < WS < NL. However, only airway thickness was significantly greater in the WS and NL MWCNTs-exposed groups than the DM-exposed group. These data suggest that methylation changes could be involved in the initial immune response of inflammation and tissue remodeling that precedes lung disease in response to different MWCNTs sizes.


Subject(s)
Disease Models, Animal , Lung Injury/metabolism , Nanotubes, Carbon/chemistry , Pneumonia/metabolism , Animals , Cytokines/analysis , DNA/genetics , DNA Methylation/genetics , Female , Lung Injury/pathology , Male , Mice , Mice, Inbred C57BL , Particle Size , Pneumonia/pathology , Surface Properties
9.
Nanotoxicology ; 13(2): 143-159, 2019 03.
Article in English | MEDLINE | ID: mdl-31111787

ABSTRACT

Functionalization of multi-walled carbon nanotubes (MWCNT) is known to affect the biological response (e.g. toxicity, inflammation) in vitro and in vivo. However, the reasons for these changes in vivo are not well described. This study examined the degree of MWCNT functionalization with regard to in vivo mouse lung distribution, particle retention, and resulting pathology. A commercially available MWCNT (source MWCNT) was functionalized (f-MWCNT) by systematically varying the degree of carboxylation on the particle's surface. Following a pilot study using seven variants, two f-MWCNT variants were chosen and for lung pathology and particle distribution using oropharyngeal aspiration administration of MWCNT in Balb/c mice. Particle distribution in the lung was examined at 7 and 28 days post-instillation by bright-field microscopy, CytoViva hyperspectral dark-field imaging, and Stimulated Raman Scattering (SRS) microscopy. Examination of the lung tissue by bright-field microscopy showed some acute inflammation for all MWCNT that was highest with source MWCNT. Hyperspectral imaging and SRS were employed to assess the changes in particle deposition and retention. Highly functionalized MWCNT had a higher lung burden and were more disperse. They also appeared to be associated more with epithelial cells compared to the source and less functionalized MWCNT that were mostly interacting with alveolar macrophages (AM). These results showing a slightly reduced pathology despite the extended deposition have implications for the engineering of safer MWCNT and may establish a practical use as a targeted delivery system.


Subject(s)
Lung/drug effects , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Pneumonia/chemically induced , Animals , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Inhalation Exposure , Lung/metabolism , Lung/pathology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Male , Mice , Mice, Inbred BALB C , Pneumonia/metabolism , Pneumonia/pathology , Surface Properties , Tissue Distribution
10.
Sci Rep ; 8(1): 15301, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30333573

ABSTRACT

We demonstrate for the first time the toxicity of carbon nanotube (CNT) metal hybrids on freshwater algae. Carbon nanotube-silver (CNT-Ag) and platinum hybrids (CNT-Pt) were synthesized and exposed to Chlamydomonas reinhardtii (C. reinhardtii), and their toxicity was compared to the pure metal salts. Interactions between CNT-metal and algae were studied using electron microscopy and it was observed that while outer membrane of the algal cell was damaged as a result of Ag+ toxicity from pure Ag, the CNT-Ag only caused the distortion of the cell wall. It was also observed that the CNT-Ag particles could be internalized and enclosed in internal vesicles in the algal cells. Long-term exposure of the CNT-metals showed delay in algal growth. CNT-Ag at a concentration of 5.0 mg/L showed 90% growth inhibition and also showed a significant effect on photosynthetic yield with a 21% drop compared to the control. It was observed that pure silver was more toxic compared with CNT-Ag for both growth and photosynthesis in the 96-hour exposure. In general, CNT-Pt showed significantly less toxic effects on the algae than CNT-Ag. Based on this study, it is postulated that the CNT suppressed the release of Ag+ from CNT-Ag hybrids, thus reducing overall toxicity.


Subject(s)
Chlamydomonas reinhardtii/growth & development , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Platinum/chemistry , Silver/chemistry , Chlamydomonas reinhardtii/drug effects , Environmental Monitoring , Fresh Water , Metal Nanoparticles/toxicity , Nanotubes, Carbon/toxicity , Photosynthesis/drug effects , Platinum/toxicity , Silver/toxicity
11.
Int J Mol Sci ; 19(2)2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29370073

ABSTRACT

Functionalization has been shown to alter toxicity of multi-walled carbon nanotube (MWCNT) in several studies. This study varied the degree of functionalization (viz., amount of MWCNT surface carboxylation) to define the relationship between the extent of carboxylation and effects in a variety of in vitro cell models and short-term ex vivo/in vivo particle exposures. Studies with vitamin D3 plus phorbol ester transformed THP-1 macrophages demonstrated that functionalization, regardless of amount, corresponded with profoundly decreased NLRP3 inflammasome activation. However, all MWCNT variants were slightly toxic in this model. Alternatively, studies with A549 epithelial cells showed some varied effects. For example, IL-33 and TNF-α release were related to varying amounts of functionalization. For in vivo particle exposures, autophagy of alveolar macrophages, measured using green fluorescent protein (GFP)- fused-LC3 transgenic mice, increased for all MWCNT tested three days after exposure, but, by Day 7, autophagy was clearly dependent on the amount of carboxylation. The instilled source MWCNT continued to produce cellular injury in alveolar macrophages over seven days. In contrast, the more functionalized MWCNT initially showed similar effects, but reduced over time. Dark-field imaging showed the more functionalized MWCNTs were distributed more uniformly throughout the lung and not isolated to macrophages. Taken together, the results indicated that in vitro and in vivo bioactivity of MWCNT decreased with increased carboxylation. Functionalization by carboxylation eliminated the bioactive potential of the MWCNT in the exposure models tested. The observation that maximally functionalized MWCNT distribute more freely throughout the lung with the absence of cellular damage, and extended deposition, may establish a practical use for these particles as a safer alternative for unmodified MWCNT.


Subject(s)
Macrophages/drug effects , Nanotubes, Carbon/adverse effects , Animals , Autophagy , Cell Line , Decarboxylation , Humans , Interleukins/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Proteasome Endopeptidase Complex/drug effects , Tumor Necrosis Factor-alpha/metabolism
12.
Inhal Toxicol ; 30(11-12): 429-438, 2018.
Article in English | MEDLINE | ID: mdl-30618316

ABSTRACT

OBJECTIVE: The toxicity of silver nanomaterials in various forms has been extensively evaluated, but the toxicity of silver nanocarbon composites is less well understood. Therefore, silver-carbon nanotube composites (Ag-MWCNT-COOH) and silver-graphene oxide composites (Ag-GO) were synthesized by microwave irradiation and evaluated in two in vitro cell models. MATERIALS/METHODS: Toxicity of silver nanosphere (Ag), Ag-MWCNT-COOH and Ag-GO were analyzed by MTS assay and LDH assay in primary C57BL/6 murine alveolar macrophages and human THP-1 cells. Activation of NLRP3 inflammasome by particle variants in these models was done by proxy using LPS co-culture and IL-1ß release. RESULTS: The results depended on the model, as the amount of Ag on the modified carbon resulted in slightly increased toxicity for the murine cells, but did not appear to affect toxicity in the human cell model. IL-1ß release from carbon particle-exposures was decreased by the presence of Ag in both cell models. Suspensions of Ag-MWCNT-COOH, Ag-GO and Ag in artificial lysosomal fluid were prepared and ICP-MS was used to detect Ag ions concentration in three silver suspension/solutions. The amount of Ag ions released from Ag-MWCNT-COOH and Ag-GO were similar, which were both lower than that of Ag nanospheres. CONCLUSIONS: The results suggest the bioactivity of silver composites may be related to the amount of Ag ions released, which can be dependent on the cell model under investigation.


Subject(s)
Graphite/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Nanotubes, Carbon/chemistry , Oxides/chemistry , Silver/chemistry , Silver/toxicity , Adsorption , Animals , Cells, Cultured , Humans , Macrophages/drug effects , Male , Mice, Inbred C57BL , THP-1 Cells
13.
Toxicol Pathol ; 46(1): 62-74, 2018 01.
Article in English | MEDLINE | ID: mdl-28946794

ABSTRACT

Multiwalled carbon nanotube (MWCNT) toxicity after inhalation has been associated with size, aspect ratio, rigidity, surface modification, and reactive oxygen species production. In this study, we investigated a series of cup-stacked MWCNT prepared as variants of the Creos 24PS. Mechanical chopping produced a short version (AR10) and graphitization to remove active reaction sites by extreme heat (2,800°C; Creos 24HT) to test the contribution of length and alteration of potential reaction sites to toxicity. The 3 MWCNT variants were tested in vitro in a human macrophage-like cell model and with C57BL/6 alveolar macrophages for dose-dependent toxicity and NLRP3 inflammasome activation. The 24PS and 24HT variants showed significant dose-dependent toxicity and inflammasome activation. In contrast, the AR10 variant showed no toxicity or bioactivity at any concentration tested. The in vivo results reflected those observed in vitro, with the 24PS and 24HT variants resulting in acute inflammation, including elevated polymorphonuclear counts, Interleukin (IL)-18, cathepsin B, and lactate dehydrogenase in isolated lung lavage fluid from mice exposed to 40 µg MWCNT. Taken together, these data indicate that length, but not the absence of proposed reaction sites, on the MWCNT influences particle bioactivity.


Subject(s)
Macrophages/drug effects , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Pneumonia/chemically induced , Animals , Humans , Male , Mice , Mice, Inbred C57BL
14.
Inhal Toxicol ; 29(10): 435-442, 2017 08.
Article in English | MEDLINE | ID: mdl-29124997

ABSTRACT

Prenatal and early-life environmental tobacco smoke (ETS) exposure can induce epigenetic alterations associated with inflammation and respiratory disease. The objective of this study was to address the long-term epigenetic consequences of perinatal ETS exposure on latent respiratory disease risk, which are still largely unknown. C57BL/6 mice were exposed to prenatal and early-life ETS; offspring lung pathology, global DNA, and gene-specific methylation were measured at two adult ages. Significant alterations in global DNA methylation and promoter methylation of IFN-γ and Thy-1 were found in ETS-exposed offspring at 10-12 and 20 weeks of age. These sustained epigenetic alterations preceded the onset of significant pulmonary pathologies observed at 20 weeks of age. This study suggests that perinatal ETS exposure induces persistent epigenetic alterations in global DNA, as well as IFN-γ and Thy-1 promoter methylation that precede the adult onset of fibrotic lung pathology. These epigenetic findings could represent potential biomarkers of latent respiratory disease risk.


Subject(s)
DNA Methylation , Lung Diseases/etiology , Tobacco Smoke Pollution/adverse effects , Animals , Female , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Pregnancy , Prenatal Exposure Delayed Effects
15.
Article in English | MEDLINE | ID: mdl-28632040

ABSTRACT

Engineered nanomaterials (ENMs), or small anthropogenic particles approximately < 100 nm in size and of various shapes and compositions, are increasingly incorporated into commercial products and used for industrial and medical purposes. There is an exposure risk to both the population at large and individuals in the workplace with inhalation exposures to ENMs being a primary concern. Further, there is increasing evidence to suggest that certain ENMs may represent a significant health risk, and many of these ENMs exhibit distinct similarities with other particles and fibers that are known to induce adverse health effects, such as asbestos, silica, and particulate matter (PM). Evidence regarding the importance of lysosomal membrane permeabilization (LMP) and release of cathepsins in ENM toxicity has been accumulating. The aim of this review was to describe our current understanding of the mechanisms leading to ENM-associated pathologies, including LMP and the role of cathepsins with a focus on inflammation. In addition, anti-cathepsin agents, some of which have been tested in clinical trials and may prove useful for ameliorating the harmful effects of ENM exposure, are examined.


Subject(s)
Cathepsins/metabolism , Lysosomes/metabolism , Nanostructures/administration & dosage , Animals , Cathepsins/antagonists & inhibitors , Environmental Exposure/adverse effects , Humans , Inflammation/etiology , Inflammation/prevention & control , Inhalation Exposure/adverse effects , Nanostructures/adverse effects , Occupational Exposure/adverse effects , Particle Size
16.
Toxicol Appl Pharmacol ; 318: 58-68, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28126413

ABSTRACT

NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with less NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1.


Subject(s)
Chemical Engineering/methods , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nanoparticles/metabolism , Phagosomes/metabolism , Silicon Dioxide/metabolism , Animals , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/physiology , Cells, Cultured , Female , Inflammasomes/metabolism , Intracellular Membranes/metabolism , Lysosomes/chemistry , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nanoparticles/chemistry , Phagosomes/chemistry , Silicon Dioxide/chemistry
17.
Toxicol Appl Pharmacol ; 309: 101-10, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27594529

ABSTRACT

Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5(fl/fl)LysM-Cre(+) mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5(fl/fl)LysM-Cre(+) mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis.


Subject(s)
Autophagy , Macrophages, Alveolar/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Silicon Dioxide/toxicity , Animals , Female , HMGB1 Protein/metabolism , Lung/pathology , Macrophages, Alveolar/immunology , Male , Mice , Mice, Transgenic
18.
PLoS One ; 10(7): e0133909, 2015.
Article in English | MEDLINE | ID: mdl-26196382

ABSTRACT

Global hypomethylation in white blood cell (WBC) DNA has recently been proposed as a potential biomarker for determining cancer risk through genomic instability. However, the amplitude of the changes associated with age and the impacts of environmental factors on DNA methylation are unclear. In this study, we investigated the association of genomic hypomethylation with age, cigarette use, drinking status and the presence of centromere positive micronuclei (MNC+)-a biomarker for age-dependent genomic instability. Genomic hypomethylation of the repetitive element LINE-1 was measured in WBC DNA from 32 healthy male volunteers using the pyrosequencing assay. We also measured MNC+ with the micronucleus-centromere assay using a pan-centromeric probe. Possibly due to the small sample size and resulting low statistical power, smoking and drinking status had no significant effect on LINE-1 hypomethylation or the occurrence of MNC+. Consequently, we did not include them in further analyses. In contrast, LINE-1 hypomethylation and age significantly predicted MNC+; therefore, we examined whether LINE-1 hypomethylation plays a role in MNC+ formation by age, since genomic hypomethylation is associated with genomic instability. However, LINE-1 hypomethylation did not significantly mediate the effect of age on MNC+. Our data indicate that the repetitive element LINE-1 is demethylated with age and increasing MNC+ frequency, but additional studies are needed to fully understand the relation between genomic DNA hypomethylation, age and genomic instability.


Subject(s)
Aging/genetics , Centromere/genetics , DNA Methylation , Genomic Instability , Long Interspersed Nucleotide Elements/genetics , Lymphocytes/metabolism , Adult , Alcohol Drinking , Cell Nucleus/genetics , Humans , Male , Middle Aged , Smoking
19.
Part Fibre Toxicol ; 11: 43, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25179214

ABSTRACT

BACKGROUND: Surface modification strategies to reduce engineered nanomaterial (ENM) bioactivity have been used successfully in carbon nanotubes. This study examined the toxicity and inflammatory potential for two surface modifications (humic acid and carboxylation) on titanium nanobelts (TNB). METHODS: The in vitro exposure models include C57BL/6 alveolar macrophages (AM) and transformed human THP-1 cells exposed to TNB for 24 hrs in culture. Cell death and NLRP3 inflammasome activation (IL-1ß release) were monitored. Short term (4 and 24 hr) in vivo studies in C57BL/6, BALB/c and IL-1R null mice evaluated inflammation and cytokine release, and cytokine release from ex vivo cultured AM. RESULTS: Both in vitro cell models suggest that the humic acid modification does not significantly affect TNB bioactivity, while carboxylation reduced both toxicity and NLRP3 inflammasome activation. In addition, short term in vivo exposures in both C57BL/6 and IL-1R null mouse strains demonstrated decreased markers of inflammation, supporting the in vitro finding that carboxylation is effective in reducing bioactivity. TNB instillations in IL-1R null mice demonstrated the critical role of IL-1ß in initiation of TNB-induced lung inflammation. Neutrophils were completely absent in the lungs of IL-1R null mice instilled with TNB for 24 hrs. However, the cytokine content of the IL-1R null mice lung lavage samples indicated that other inflammatory agents, IL-6 and TNF-α were constitutively elevated indicating a potential compensatory inflammatory mechanism in the absence of IL-1 receptors. CONCLUSIONS: Taken together, the data suggests that carboxylation, but not humic acid modification of TNB reduces, but does not totally eliminate bioactivity of TNB, which is consistent with previous studies of other long aspect ratio nanomaterials such as carbon nanotubes.


Subject(s)
Carboxylic Acids/chemical synthesis , Carboxylic Acids/toxicity , Nanoparticles/chemistry , Nanoparticles/toxicity , Titanium/chemistry , Titanium/toxicity , Animals , Carrier Proteins/metabolism , Cell Death/drug effects , Cell Line , Dose-Response Relationship, Drug , Humans , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Interleukin-1/deficiency , Receptors, Interleukin-1/genetics , Surface Properties , Time Factors
20.
J Immunol Res ; 2014: 304180, 2014.
Article in English | MEDLINE | ID: mdl-25054161

ABSTRACT

MARCO is the predominant scavenger receptor for recognition and binding of silica particles by alveolar macrophages (AM). Previously, it was shown that mice null for MARCO have a greater inflammatory response to silica, but the mechanism was not described. The aim of this study was to determine the relationship between MARCO and NLRP3 inflammasome activity. Silica increased NLRP3 inflammasome activation and release of the proinflammatory cytokine, IL-1ß, to a greater extent in MARCO(-/-) AM compared to wild type (WT) AM. Furthermore, in MARCO(-/-) AM there was greater cathepsin B release from phagolysosomes, Caspase-1 activation, and acid sphingomyelinase activity compared to WT AM, supporting the critical role played by lysosomal membrane permeabilization (LMP) in triggering silica-induced inflammation. The difference in sensitivity to LMP appears to be in cholesterol recycling since increasing cholesterol in AM by treatment with U18666A decreased silica-induced NLRP3 inflammasome activation, and cells lacking MARCO were less able to sequester cholesterol following silica treatment. Taken together, these results demonstrate that MARCO contributes to normal cholesterol uptake in macrophages; therefore, in the absence of MARCO, macrophages are more susceptible to a greater inflammatory response by particulates known to cause NLRP3 inflammasome activation and the effect is due to increased LMP.


Subject(s)
Inflammasomes/metabolism , Inflammation/metabolism , Lysosomes/metabolism , Receptors, Immunologic/metabolism , Silicon Dioxide/administration & dosage , Animals , Carrier Proteins/metabolism , Caspase 1/metabolism , Cathepsin B/metabolism , Cholesterol/metabolism , Enzyme Activation/drug effects , Female , Gene Expression , Inflammasomes/genetics , Inflammation/genetics , Interleukin-1beta/biosynthesis , Interleukin-1beta/genetics , Interleukin-6/biosynthesis , Intracellular Space , Male , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Immunologic/genetics , Sphingomyelin Phosphodiesterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...