Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cells ; 12(5)2023 03 02.
Article in English | MEDLINE | ID: mdl-36899925

ABSTRACT

Preimplantation genetic testing for aneuploidy (PGT-A) is widespread, but controversial, in humans and improves pregnancy and live birth rates in cattle. In pigs, it presents a possible solution to improve in vitro embryo production (IVP), however, the incidence and origin of chromosomal errors remains under-explored. To address this, we used single nucleotide polymorphism (SNP)-based PGT-A algorithms in 101 in vivo-derived (IVD) and 64 IVP porcine embryos. More errors were observed in IVP vs. IVD blastocysts (79.7% vs. 13.6% p < 0.001). In IVD embryos, fewer errors were found at blastocyst stage compared to cleavage (4-cell) stage (13.6% vs. 40%, p = 0.056). One androgenetic and two parthenogenetic embryos were also identified. Triploidy was the most common error in IVD embryos (15.8%), but only observed at cleavage, not blastocyst stage, followed by whole chromosome aneuploidy (9.9%). In IVP blastocysts, 32.8% were parthenogenetic, 25.0% (hypo-)triploid, 12.5% aneuploid, and 9.4% haploid. Parthenogenetic blastocysts arose from just three out of ten sows, suggesting a possible donor effect. The high incidence of chromosomal abnormalities in general, but in IVP embryos in particular, suggests an explanation for the low success of porcine IVP. The approaches described provide a means of monitoring technical improvements and suggest future application of PGT-A might improve embryo transfer success.


Subject(s)
Aneuploidy , Fertilization in Vitro , Genetic Testing , Sus scrofa , Sus scrofa/embryology , Sus scrofa/genetics , Sus scrofa/physiology , Fertilization in Vitro/veterinary , Genetic Testing/methods , Embryonic Development , Blastocyst/physiology , Embryo, Mammalian/physiology , Embryo Transfer/veterinary , Polymorphism, Single Nucleotide , Algorithms , Animals , Chromosomes, Mammalian/genetics
2.
PLoS Genet ; 15(3): e1008055, 2019 03.
Article in English | MEDLINE | ID: mdl-30875370

ABSTRACT

Lethal recessive alleles cause pre- or postnatal death in homozygous affected individuals, reducing fertility. Especially in small size domestic and wild populations, those alleles might be exposed by inbreeding, caused by matings between related parents that inherited the same recessive lethal allele from a common ancestor. In this study we report five relatively common (up to 13.4% carrier frequency) recessive lethal haplotypes in two commercial pig populations. The lethal haplotypes have a large effect on carrier-by-carrier matings, decreasing litter sizes by 15.1 to 21.6%. The causal mutations are of different type including two splice-site variants (affecting POLR1B and TADA2A genes), one frameshift (URB1), and one missense (PNKP) variant, resulting in a complete loss-of-function of these essential genes. The recessive lethal alleles affect up to 2.9% of the litters within a single population and are responsible for the death of 0.52% of the total population of embryos. Moreover, we provide compelling evidence that the identified embryonic lethal alleles contribute to the observed heterosis effect for fertility (i.e. larger litters in crossbred offspring). Together, this work marks specific recessive lethal variation describing its functional consequences at the molecular, phenotypic, and population level, providing a unique model to better understand fertility and heterosis in livestock.


Subject(s)
Genes, Lethal , Loss of Function Mutation , Sus scrofa/embryology , Sus scrofa/genetics , Amino Acid Sequence , Animals , Female , Fertility/genetics , Genes, Recessive , Genetic Drift , Genetics, Population , Haplotypes , Hybrid Vigor/genetics , Hybridization, Genetic/genetics , Litter Size/genetics , Male , Pregnancy , RNA Polymerase I/genetics , Sequence Analysis, RNA , Whole Genome Sequencing
3.
BMC Genet ; 18(1): 85, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29020941

ABSTRACT

BACKGROUND: Previous studies in the Norwegian pig breeds Landrace and Duroc have revealed a QTL for levels of skatole located in the region 74.7-80.5 Mb on SSC7. Skatole is one of the main components causing boar taint, which gives an undesirable smell and taste to the pig meat when heated. Surgical castration of boars is a common practice to reduce the risk of boar taint, however, a selection for boars genetically predisposed for low levels of taint would help eliminating the need for castration and be advantageous for both economic and welfare reasons. In order to identify the causal mutation(s) for the QTL and/or identify genetic markers for selection purposes we performed a fine mapping of the SSC7 skatole QTL region. RESULTS: A dense set of markers on SSC7 was obtained by whole genome re-sequencing of 24 Norwegian Landrace and 23 Duroc boars. Subsets of 126 and 157 SNPs were used for association analyses in Landrace and Duroc, respectively. Significant single markers associated with skatole spanned a large 4.4 Mb region from 75.9-80.3 Mb in Landrace, with the highest test scores found in a region between the genes NOVA1 and TGM1 (p < 0.001). The same QTL was obtained in Duroc and, although less significant, with associated SNPs spanning a 1.2 Mb region from 78.9-80.1 Mb (p < 0.01). The highest test scores in Duroc were found in genes of the granzyme family (GZMB and GZMH-like) and STXBP6. Haplotypes associated with levels of skatole were identified in Landrace but not in Duroc, and a haplotype block was found to explain 2.3% of the phenotypic variation for skatole. The SNPs in this region were not associated with levels of sex steroids. CONCLUSIONS: Fine mapping of a QTL for skatole on SSC7 confirmed associations of this region with skatole levels in pigs. The QTL region was narrowed down to 4.4 Mb in Landrace and haplotypes explaining 2.3% of the phenotypic variance for skatole levels were identified. Results confirmed that sex steroids are not affected by this QTL region, making these markers attractive for selection against boar taint.


Subject(s)
Biomarkers , Chromosome Mapping/methods , Chromosomes , Quantitative Trait Loci , Skatole/analysis , Swine/genetics , Whole Genome Sequencing/methods , Animals , Humans , Male , Polymorphism, Single Nucleotide
4.
BMC Genomics ; 12: 362, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21752240

ABSTRACT

BACKGROUND: Boar taint is observed in a high proportion of uncastrated male pigs and is characterized by an unpleasant odor/flavor in cooked meat, primarily caused by elevated levels of androstenone and skatole. Androstenone is a steroid produced in the testis in parallel with biosynthesis of other sex steroids like testosterone and estrogens. This represents a challenge when performing selection against androstenone in breeding programs, without simultaneously decreasing levels of other steroids. The aim of this study was to use high-density genome wide association (GWA) in combination with linkage disequilibrium-linkage analysis (LDLA) to identify quantitative trait loci (QTL) associated with boar taint compounds and related sex steroids in commercial Landrace (n = 1,251) and Duroc (n = 918) breeds. RESULTS: Altogether, 14 genome wide significant (GWS) QTL regions for androstenone in subcutaneous fat were obtained from the LDLA study in Landrace and 14 GWS QTL regions in Duroc. LDLA analysis revealed that 7 of these QTL regions, located on SSC 1, 2, 3, 7 and 15, were obtained in both breeds. All 14 GWS androstenone QTLs in Landrace are also affecting the estrogens at chromosome wise significance (CWS) or GWS levels, while in Duroc, 3 of the 14 QTLs affect androstenone without affecting any of the estrogens. For skatole, 10 and 4 QTLs were GWS in the LDLA analysis for Landrace and Duroc respectively, with 4 of these detected in both breeds. The GWS QTLs for skatole obtained by LDLA are located at SSC 1, 5, 6, 7, 10, 11, 13 and 14. CONCLUSION: This is the first report applying the Porcine 60 K SNP array for simultaneous analysis of boar taint compounds and related sex hormones, using both GWA and LDLA approaches. Several QTLs are involved in regulation of androstenone and skatole, and most of the QTLs for androstenone are also affecting the levels of estrogens. Seven QTLs for androstenone were detected in one breed and confirmed in the other, i.e. in an independent sample, although the majority of QTLs are breed specific. Most QTLs for skatole do not negatively affect other sex hormones and should be easier to implement into the breeding scheme.


Subject(s)
Genetic Linkage , Genome-Wide Association Study , Gonadal Steroid Hormones/genetics , Linkage Disequilibrium , Quantitative Trait Loci , Swine/genetics , Androstenes/metabolism , Animals , Breeding , Genome , Male , Meat/standards , Polymorphism, Single Nucleotide , Skatole/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL