Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 28(10): 1978-1987, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24637335

ABSTRACT

Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the upregulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost fourfold reduction in proliferative activity compared with non-vascular-associated AML. Primary AML cells can be induced to downregulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. These novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for AML.


Subject(s)
Endothelium, Vascular/metabolism , Leukemia, Myeloid, Acute/physiopathology , Adult , Aged , Aged, 80 and over , Animals , Antigens, CD/metabolism , Cell Differentiation , Cell Line , Cell Survival , Cells, Cultured , Endoglin , Female , Humans , In Situ Hybridization, Fluorescence , Leukemia, Myeloid, Acute/metabolism , Male , Mice , Mice, Inbred NOD , Middle Aged , Neoplasm Transplantation , Phenotype , Receptors, Cell Surface/metabolism , Recurrence , Young Adult
2.
Biol Blood Marrow Transplant ; 20(1): 132-5, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24161922

ABSTRACT

Human cytomegalovirus (HCMV) infection, including primary infection resulting from transmission from a seropositive donor to a seronegative recipient (D(+)/R(-)), remains a significant problem in the setting of peripheral blood stem cell transplantation (PBSCT). The lack of a suitable animal model for studying HCMV transmission after PBSCT is a major barrier to understanding this process and, consequently, developing novel interventions to prevent HCMV infection. Our previous work demonstrated that human CD34(+) progenitor cell-engrafted NOD-scid IL2Rγc(null) (NSG) mice support latent HCMV infection after direct inoculation and reactivation after treatment with granulocyte colony-stimulating factor. To more accurately recapitulate HCMV infection in the D(+)/R(-) PBSCT setting, granulocyte colony-stimulating factor-mobilized peripheral blood stem cells from seropositive donors were used to engraft NSG mice. All recipient mice demonstrated evidence of HCMV infection in liver, spleen, and bone marrow. These findings validate the NSG mouse model for studying HCMV transmission during PBSCT.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Peripheral Blood Stem Cell Transplantation , Animals , Bone Marrow/immunology , Bone Marrow/pathology , Bone Marrow/virology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/pathology , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/drug effects , Humans , Liver/immunology , Liver/pathology , Liver/virology , Mice , Mice, Transgenic , Spleen/immunology , Spleen/pathology , Spleen/virology , Transplantation, Heterologous , Viral Load , Virus Activation , Virus Replication
3.
Stem Cell Res ; 11(3): 1013-21, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23939266

ABSTRACT

Endothelial cells (ECs) are an essential component of the hematopoietic microenvironment, which maintains and regulates hematopoietic stem cells (HSCs). Although ECs can support the regeneration of otherwise lethally-irradiated HSCs, the mechanisms are not well understood. To further understand this phenomenon, we studied HSC regeneration from irradiated bone marrow using co-culture with human aortic ECs (HAECs). Co-culture with HAECs induced a 24-fold expansion of long-term HSCs (CD150(+), lineage(lo), Sca-1(+), c-Kit(+); CD150(+)LSK cells) in vitro. These cells gave rise to functional hematopoietic stem and progenitor cells (HSPCs) with colony-forming activity, multilineage reconstitution and serial transplantation potential. Furthermore, HAECs significantly reduced DNA damage in irradiated LSK cells within 24h. Remarkably, we were able to delay the exposure of irradiated bone marrow to the regenerative, HAEC-derived signals for up to 48h and still rescue functional HSCs. G-CSF is the gold standard for promoting hematopoietic regeneration in vivo. However, when compared to HAECs, in vitro G-CSF treatment promoted lineage differentiation and regenerated 5-fold fewer CD150(+)LSK cells. Together, our results show that HAECs are powerful, direct mitigators of HSC injury and DNA damage. Identification of the HAEC-derived factors that rescue HSCs may lead to improved therapies for hematopoietic regeneration after radiation injury.


Subject(s)
DNA Damage/radiation effects , Endothelial Cells/cytology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/radiation effects , Whole-Body Irradiation , Animals , Aorta/cytology , Bone Marrow Cells/cytology , Bone Marrow Cells/radiation effects , Bone Marrow Transplantation , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Movement , Cell Proliferation/drug effects , Cells, Cultured , Coculture Techniques , Endothelial Cells/metabolism , Female , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoiesis , Humans , Male , Mice
4.
PLoS Pathog ; 7(12): e1002444, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22241980

ABSTRACT

Clinical strains of HCMV encode 20 putative ORFs within a region of the genome termed ULb' that are postulated to encode functions related to persistence or immune evasion. We have previously identified ULb'-encoded pUL138 as necessary, but not sufficient, for HCMV latency in CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. pUL138 is encoded on polycistronic transcripts that also encode 3 additional proteins, pUL133, pUL135, and pUL136, collectively comprising the UL133-UL138 locus. This work represents the first characterization of these proteins and identifies a role for this locus in infection. Similar to pUL138, pUL133, pUL135, and pUL136 are integral membrane proteins that partially co-localized with pUL138 in the Golgi during productive infection in fibroblasts. As expected of ULb' sequences, the UL133-UL138 locus was dispensable for replication in cultured fibroblasts. In CD34+ HPCs, this locus suppressed viral replication in HPCs, an activity attributable to both pUL133 and pUL138. Strikingly, the UL133-UL138 locus was required for efficient replication in endothelial cells. The association of this locus with three context-dependent phenotypes suggests an exciting role for the UL133-UL138 locus in modulating the outcome of viral infection in different contexts of infection. Differential profiles of protein expression from the UL133-UL138 locus correlated with the cell-type dependent phenotypes associated with this locus. We extended our in vitro findings to analyze viral replication and dissemination in a NOD-scid IL2Rγ(c) (null)-humanized mouse model. The UL133-UL138(NULL) virus exhibited an increased capacity for replication and/or dissemination following stem cell mobilization relative to the wild-type virus, suggesting an important role in viral persistence and spread in the host. As pUL133, pUL135, pUL136, and pUL138 are conserved in virus strains infecting higher order primates, but not lower order mammals, the functions encoded likely represent host-specific viral adaptations.


Subject(s)
Cytomegalovirus Infections/metabolism , Cytomegalovirus/physiology , Genetic Loci , Hematopoietic Stem Cells/virology , Host-Pathogen Interactions/physiology , Viral Tropism/physiology , Virus Replication/physiology , Animals , Cell Line , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/pathology , Disease Models, Animal , Hematopoietic Stem Cells/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID
SELECTION OF CITATIONS
SEARCH DETAIL
...