Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 33(1): e2726, 2023 01.
Article in English | MEDLINE | ID: mdl-36053865

ABSTRACT

We conducted a range-wide investigation of the dynamics of site-level reproductive rate of northern spotted owls using survey data from 11 study areas across the subspecies geographic range collected during 1993-2018. Our analytical approach accounted for imperfect detection of owl pairs and misclassification of successful reproduction (i.e., at least one young fledged) and contributed further insights into northern spotted owl population ecology and dynamics. Both nondetection and state misclassification were important, especially because factors affecting these sources of error also affected focal ecological parameters. Annual probabilities of site occupancy were greatest at sites with successful reproduction in the previous year and lowest for sites not occupied by a pair in the previous year. Site-specific occupancy transition probabilities declined over time and were negatively affected by barred owl presence. Overall, the site-specific probability of successful reproduction showed substantial year-to-year fluctuations and was similar for occupied sites that did or did not experience successful reproduction the previous year. Site-specific probabilities for successful reproduction were very small for sites that were unoccupied the previous year. Barred owl presence negatively affected the probability of successful reproduction by northern spotted owls in Washington and California, as predicted, but the effect in Oregon was mixed. The proportions of sites occupied by northern spotted owl pairs showed steep, near-monotonic declines over the study period, with all study areas showing the lowest observed levels of occupancy to date. If trends continue it is likely that northern spotted owls will become extirpated throughout large portions of their range in the coming decades.


Subject(s)
Strigiformes , Animals , Probability , Reproduction , Oregon , Washington
2.
PeerJ ; 9: e11670, 2021.
Article in English | MEDLINE | ID: mdl-34434640

ABSTRACT

BACKGROUND: Many mammalian species have experienced range contractions. Following a reduction in distribution that has resulted in apparently small and disjunct populations, the Humboldt marten (Martes caurina humboldtensis) was recently designated as federally Threatened and state Endangered. This subspecies of Pacific marten occurring in coastal Oregon and northern California, also known as coastal martens, appear unlike martens that occur in snow-associated regions in that vegetation associations appear to differ widely between Humboldt marten populations. We expected current distributions represent realized niches, but estimating factors associated with long-term occurrence was challenging for this rare and little-known species. Here, we assessed the predicted contemporary distribution of Humboldt martens and interpret our findings as hypotheses correlated with the subspecies' niche to inform strategic conservation actions. METHODS: We modeled Humboldt marten distribution using a maximum entropy (Maxent) approach. We spatially-thinned 10,229 marten locations collected from 1996-2020 by applying a minimum distance of 500-m between locations, resulting in 384 locations used to assess correlations of marten occurrence with biotic and abiotic variables. We independently optimized the spatial scale of each variable and focused development of model variables on biotic associations (e.g., hypothesized relationships with forest conditions), given that abiotic factors such as precipitation are largely static and not alterable within a management context. RESULTS: Humboldt marten locations were positively associated with increased shrub cover (salal (Gautheria shallon)), mast producing trees (e.g., tanoak, Notholithocarpus densiflorus), increased pine (Pinus sp.) proportion of total basal area, annual precipitation at home-range spatial scales, low and high amounts of canopy cover and slope, and cooler August temperatures. Unlike other recent literature, we found little evidence that Humboldt martens were associated with old-growth structural indices. This case study provides an example of how limited information on rare or lesser-known species can lead to differing interpretations, emphasizing the need for study-level replication in ecology. Humboldt marten conservation would benefit from continued survey effort to clarify range extent, population sizes, and fine-scale habitat use.

3.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34282032

ABSTRACT

Changes in the distribution and abundance of invasive species can have far-reaching ecological consequences. Programs to control invaders are common but gauging the effectiveness of such programs using carefully controlled, large-scale field experiments is rare, especially at higher trophic levels. Experimental manipulations coupled with long-term demographic monitoring can reveal the mechanistic underpinnings of interspecific competition among apex predators and suggest mitigation options for invasive species. We used a large-scale before-after control-impact removal experiment to investigate the effects of an invasive competitor, the barred owl (Strix varia), on the population dynamics of an iconic old-forest native species, the northern spotted owl (Strix occidentalis caurina). Removal of barred owls had a strong, positive effect on survival of sympatric spotted owls and a weaker but positive effect on spotted owl dispersal and recruitment. After removals, the estimated mean annual rate of population change for spotted owls stabilized in areas with removals (0.2% decline per year), but continued to decline sharply in areas without removals (12.1% decline per year). The results demonstrated that the most substantial changes in population dynamics of northern spotted owls over the past two decades were associated with the invasion, population expansion, and subsequent removal of barred owls. Our study provides experimental evidence of the demographic consequences of competitive release, where a threatened avian predator was freed from restrictions imposed on its population dynamics with the removal of a competitively dominant invasive species.


Subject(s)
Animal Distribution , Introduced Species , Strigiformes/physiology , Animals , Ecosystem , Northwestern United States , Population Dynamics
4.
Ecol Appl ; 29(3): e01861, 2019 04.
Article in English | MEDLINE | ID: mdl-30835921

ABSTRACT

Slow ecological processes challenge conservation. Short-term variability can obscure the importance of slower processes that may ultimately determine the state of a system. Furthermore, management actions with slow responses can be hard to justify. One response to slow processes is to explicitly concentrate analysis on state dynamics. Here, we focus on identifying drivers of Northern Spotted Owl (Strix occidentalis caurina) territorial occupancy dynamics across 11 study areas spanning their geographic range and forecasting response to potential management actions. Competition with Barred Owls (Strix varia) has increased Spotted Owl territory extinction probabilities across all study areas and driven recent declines in Spotted Owl populations. Without management intervention, the Northern Spotted Owl subspecies will be extirpated from parts of its current range within decades. In the short term, Barred Owl removal can be effective. Over longer time spans, however, maintaining or improving habitat conditions can help promote the persistence of northern spotted owl populations. In most study areas, habitat effects on expected Northern Spotted Owl territorial occupancy are actually greater than the effects of competition from Barred Owls. This study suggests how intensive management actions (removal of a competitor) with rapid results can complement a slower management action (i.e., promoting forest succession).


Subject(s)
Strigiformes , Animals , Conservation of Natural Resources , Data Collection , Ecosystem , Forests
SELECTION OF CITATIONS
SEARCH DETAIL
...