Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Viruses ; 16(3)2024 02 27.
Article in English | MEDLINE | ID: mdl-38543728

ABSTRACT

Epizootic hemorrhagic disease (EHD) is a non-contagious arthropod-transmitted viral disease and a World Organization for Animal Health (WOAH)-listed disease of domestic and wild ruminants since 2008. EHDV is transmitted among susceptible animals by a few species of midges of genus Culicoides. During the fall of 2021, a large outbreak caused by the epizootic hemorrhagic disease virus (EHDV), identified as serotype 8, was reported in Tunisian dairy and beef farms with Bluetongue virus (BTV)-like clinical signs. The disease was detected later in the south of Italy, in Spain, in Portugal and, more recently, in France, where it caused severe infections in cattle. This was the first evidence of EHDV-8 circulation outside Australia since 1982. In this study, we analyzed the epidemiological situation of the 2021-2022 EHDV outbreaks reported in Tunisia, providing a detailed description of the spatiotemporal evolution of the disease. We attempted to identify the eco-climatic factors associated with infected areas using generalized linear models (GLMs). Our results demonstrated that environmental factors mostly associated with the presence of C. imicola, such as digital elevation model (DEM), slope, normalized difference vegetation index (NDVI), and night-time land surface temperature (NLST)) were by far the most explanatory variables for EHD repartition cases in Tunisia that may have consequences in neighboring countries, both in Africa and Europe through the spread of infected vectors. The risk maps elaborated could be useful for disease control and prevention strategies.


Subject(s)
Animal Diseases , Bluetongue virus , Ceratopogonidae , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Cattle , Animals , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Serogroup , Tunisia/epidemiology , Ruminants
2.
Int J Environ Health Res ; 34(4): 1995-2014, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37086061

ABSTRACT

In this study, the detection rates of four enteric viruses, Human Astrovirus (HAstVs), Aichivirus (AiVs), Human Adenovirus (HAdVs), and Sapovirus (SaVs) are carried out to assess the virological quality of the treated wastewater. A total of 140 samples was collected from wastewater treatment plant WWTP of Tunis-City. Real-time RT-PCR and conventional RT-PCR results showed high frequencies of detection of the four enteric viruses investigated at the entry and exit of the biological activated sludge procedure and a significant reduction in viral titers after tertiary treatment with UV-C254 irradiation. These results revealed the ineffectiveness of the biological activated sludge treatment in removing viruses and the poor quality of the treated wastewater intended for recycling, agricultural reuse, and safe discharge into the natural environment. The UV-C254 irradiation, selected while considering the non-release of known disinfection by-products because of eventual reactions with the large organic and mineral load commonly present in the wastewater.


Subject(s)
Enterovirus , Sapovirus , Viruses , Humans , Sewage , Sapovirus/genetics , Adenoviridae , Wastewater
3.
Vet Ital ; 59(4)2023 12 31.
Article in English | MEDLINE | ID: mdl-38117055

ABSTRACT

Epizootic hemorrhagic disease virus serotype 8 (EHDV-8) emerged in Europe for the first time in late 2022. In this study, we investigated the kinetics of EHDV-8 infection in cattle, sheep, and goats.  Following experimental infection with EHDV-8, four out of five calves displayed fever, while another calf exhibited ulcerative and crusty lesions of the muzzle. RNAemia peaked at day 7 post infection in all calves and remained relatively stable till the end of the study, at 78 days post infection. Infectious virus was isolated up to 21 days post infection in one calf. As far as small ruminants are concerned, one sheep experienced fever and two out of five had consistent RNAemia that lasted until the end of the study. Remarkably, infectious virus was evidenced at day 7 post infection in one sheep. In goats, no RNA was observed. All infected animals seroconverted, and a neutralizing immune response was observed in all species, with calves exhibiting a more robust response than sheep and goats. Our study provides insights into the kinetics of EHDV-8 infection and the host immune responses. We also highlight that sheep may also play a role in EHDV-8 epidemiology. Altogether, the data gathered in this study could have important implications for disease control and prevention strategies, providing crucial information to policy makers to mitigate the impact of this viral disease on livestock.


Subject(s)
Cattle Diseases , Goat Diseases , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Sheep Diseases , Sheep , Cattle , Animals , Reoviridae Infections/veterinary , Goats , Serogroup , Cattle Diseases/epidemiology , Ruminants
4.
J Virol Methods ; 321: 114808, 2023 11.
Article in English | MEDLINE | ID: mdl-37690747

ABSTRACT

Epizootic hemorrhagic disease virus (EHDV) is a Culicoides-transmitted virus circulating in multiple serotypes. It has become a concern in the European Union as a novel strain of the serotype 8 (EHDV-8) of clear Northern African origin, has been recently discovered in symptomatic cattle in Italy (islands of Sardinia and Sicily), Spain, and Portugal. Current molecular typing methods targeting the S2 nucleotide sequences -coding for the outermost protein of the virion VP2- are not able to detect the novel emerging EHDV-8 strain as they enrolled the S2 sequence of the unique EHDV-8 reference strain isolated in Australia in 1982. Thus, in this study, we developed and validated a novel typing assay for the detection and quantitation of the novel EHDV-8 RNA from field samples, including blood of ruminants and insects. This molecular tool will certainly support EHDV-8 surveillance and control.


Subject(s)
Hemorrhagic Disease Virus, Epizootic , Animals , Cattle , Hemorrhagic Disease Virus, Epizootic/genetics , Serogroup , Australia , Biological Assay , RNA
5.
Viruses ; 15(7)2023 07 18.
Article in English | MEDLINE | ID: mdl-37515253

ABSTRACT

Epizootic hemorrhagic disease (EHD) is a Culicoides-borne disease of domestic and wild ruminants caused by EHD virus (EHDV). This virus circulates in multiple serotypes. In late September 2021, a novel strain belonging to EHDV-8 was reported in cattle farms in Central-Western Tunisia, and in the fall of 2022, the same virus was also detected in Italy and Spain. In the present study, we described EHDV-8 occurrence in deer and, a preliminary identification of the potential Culicoides species responsible for virus transmission in selected areas of Tunisia. EHDV-8 was identified in deer carcasses found in 2021 and 2022 in the national reserve of El Feidja, Jendouba, Northwestern Tunisia, and isolated on cell culture. Instead, insect vectors were collected in October 2021 only in the areas surrounding the city of Tozeur (Southern Tunisia) where EHDV-8 cases in cattle were confirmed. Morphological identification showed that 95% of them belonged to the Culicoides kingi and Culicoides oxystoma species and both species tested positive for EHDV-8 RNA. C. imicola was not detected in this collection and EHDV-8 RNA was not evidenced in vector pools collected in 2020, prior to official EHDV-8 emergence. EHDV whole genome sequences were also obtained directly from infected biological samples of deer and positive vectors. EHDV-8 sequences obtained from deer and vectors share a nucleotide identity ranging from 99.42 to 100% and amino acid identity from 99.18 to 100% across all genome segments with the EHDV-8/17 TUN2021 reference sequence.


Subject(s)
Ceratopogonidae , Deer , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Animals , Cattle , Hemorrhagic Disease Virus, Epizootic/genetics , Serogroup , Tunisia/epidemiology , Ruminants , RNA
6.
Food Environ Virol ; 15(3): 224-235, 2023 09.
Article in English | MEDLINE | ID: mdl-37140767

ABSTRACT

Monitoring the circulation of enteric viruses in environmental wastewater is a valuable tool for preventing the emergence of waterborne and food-borne diseases in humans. The detection of viruses was performed in five Tunisian wastewater treatment plants, three located in the Grand Tunis City (WWTP 1, WWTP 2, WWTP 3) and two in the Sahel of Tunisia (WWTP 4, WWTP 4), known as very developed and crowded zones, to assess the effectiveness of three biological wastewater treatment procedures namely natural oxidizing lagoons, rotating biodisks procedure, activated sludge procedure, and one tertiary sewage treatment using UV-C254 reactor for this enteric viruses' removal. Thus, 242 sewage samples were collected between June 2019 and May 2020 from different lines of wastewater treatment procedures implemented in the five wastewater treatment plants investigated. SARS-CoV-2 was analyzed using real-time multiplex reverse-transcription polymerase chain reaction (multiplex real-time RT-PCR) and enteroviruses using reverse-transcription polymerase chain reaction (RT-PCR). The enteroviruses detection showed 93% and 73% respective high frequencies only in the two WWTPs of the Grand Tunis (WWTP 1 and WWTP 2). SARS-CoV-2 was detected in 58% of the all wastewater samples collected from the five studied WWTPs with a respective dominance of N gene (47%), S gene (42%), RdRp gene (42%) and at last E gene (20%). These enteroviruses and SARS-CoV-2 detection were revealed in all steps of the wastewater treatment procedures, so poor virological quality is found at the exit of each biological and tertiary step of treatment investigated. For the first time in Tunisia, these results highlighted the enterovirus and SARS-CoV-2 detection with high rates, and the ineffectiveness of the biological and UV-C254 treatment implemented to remove these viruses. The preliminary results of SARS-CoV-2 circulation in Tunisian wastewater confirmed the wide positivity rate underlined by other works worldwide and allowed showing a move towards integrating wastewater as a way for this virus to spread in different areas and environments. So, this last result about SARS-CoV-2 circulation allowed us to caution about the strong probability of diffusion of this hazardous virus through water and sewage; despite its enveloped character and nature, as a labile and sensitive virus in these environments. Thus, establishing a national surveillance strategy is needed to improve the sanitary quality of treated wastewater and prevent public health problems related to these viruses in treated wastewater.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Humans , Wastewater , Sewage , SARS-CoV-2/genetics , COVID-19/epidemiology , Enterovirus/genetics , RNA, Viral/analysis
7.
Emerg Infect Dis ; 29(5): 1063-1065, 2023 05.
Article in English | MEDLINE | ID: mdl-37081599

ABSTRACT

We describe the detection of epizootic hemorrhagic disease virus (EHDV) serotype 8 in cattle farms in Sardinia and Sicily in October-November 2022. The virus has a direct origin in North Africa; its genome is identical (>99.9% nucleotide sequence identity) to EHDV serotype 8 strains detected in Tunisia in 2021.


Subject(s)
Cattle Diseases , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Animals , Cattle , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Serogroup , Hemorrhagic Disease Virus, Epizootic/genetics , Base Sequence , Italy/epidemiology , Cattle Diseases/epidemiology
8.
Vet Med Sci ; 8(6): 2703-2715, 2022 11.
Article in English | MEDLINE | ID: mdl-36005907

ABSTRACT

BACKGROUND: Tunisia has experienced several West Nile virus (WNV) outbreaks since 1997. Yet, there is limited information on the spatial distribution of the main WNV mosquito vector Culex pipiens suitability at the national level. OBJECTIVES: In the present study, our aim was to predict and evaluate the potential and current distribution of Cx. pipiens in Tunisia. METHODS: To this end, two species distribution models were used, i.e. MaxEnt and Random Forest. Occurrence records for Cx. pipiens were obtained from adult and larvae sampled in Tunisia from 2014 to 2017. Climatic and human factors were used as predictors to model the Cx. pipiens geographical distribution. Mean decrease accuracy and mean decrease Gini indices were calculated to evaluate the importance of the impact of different environmental and human variables on the probability distribution of Cx. pipiens. RESULTS: Suitable habitats were mainly distributed next to oases, in the north and eastern part of the country. The most important predictor was the population density in both models. The study found out that the governorates of Monastir, Nabeul, Manouba, Ariana, Bizerte, Gabes, Medenine and Kairouan are at highest epidemic risk. CONCLUSIONS: The potential distribution of Cx. pipiens coincides geographically with the observed distribution of the disease in humans in Tunisia. Our study has the potential for driving control effort in the fight against West Nile vector in Tunisia.


Subject(s)
Culex , West Nile virus , Animals , Humans , Tunisia/epidemiology , Mosquito Vectors , Larva
9.
Open Vet J ; 12(1): 114-123, 2022.
Article in English | MEDLINE | ID: mdl-35342732

ABSTRACT

Background: Bluetongue (BT) is an important infectious, non-contagious, OIE-listed viral disease of domestic and wild ruminants. The disease is transmitted among susceptible animals by a few species of an insect vector in the genus Culicoides. Recently, during the fall of 2020 (September and October), a Bluetongue virus-4 epizootic marked the epidemiological situation in several delegations of Tunisia with clinical cases recorded in sheep and cattle. Aim: Determine the eco-climatic variables most likely associated with delegations reporting BT cases. Methods: A logistic regression model (LRM) was used to examine which eco-climatic variables were most likely associated with delegations reporting BT cases. Results: Based on the LRM, our findings demonstrated that the key factors contributing significantly to BT cases' distribution among delegations in Tunisia included day land surface temperatures (DLST), night land surface temperatures (NLST) and normalized difference vegetation index (NDVI). A positive correlation between sheep distribution and rainfall amounts was demonstrated. Statistical analysis focusing on the most affected delegations during the BT epidemic (the Sahel and the Centre of Tunisia) demonstrated that the epidemic situation seems to be a consequence of the combination of the following environmental parameters: NDVI with values ranging between 0.16 and 0.2, moderate rainfall 2-4-fold above the normal (10-50 mm) and DLST values between 32°C and 34°C in September. Conclusion: These findings suggest and develop a robust and efficient early warning surveillance program in risk areas based on eco-climatic risk factors.


Subject(s)
Bluetongue virus , Bluetongue , Cattle Diseases , Ceratopogonidae , Sheep Diseases , Animals , Bluetongue/epidemiology , Cattle , Cattle Diseases/epidemiology , Insect Vectors , Sheep , Sheep Diseases/epidemiology , Tunisia/epidemiology
10.
Int J Environ Health Res ; 32(2): 406-416, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32452215

ABSTRACT

The aim of this study was to compare the antibiotic susceptibility of eighty Escherichia coli isolates from vegetables and food products of animal origin in Tunisia, and to study their genes encoding antibiotic resistance and in vitro biofilm forming capacity. Antimicrobial susceptibilities were determined, as well as PCR investigation of genes associated with antibiotic resistance. Biofilm formation was tested using four different methods: the microtiter plate-, MTT-staining-, XTT-staining-, and the Congo Red Agar assays. High antibiotic resistance rates were observed for amoxicillin (68.7%), amoxicillin/clavulanic acid (73.7%), gentamicin (68.7%), kanamycin (66.2%), nalidixic acid (36.2%), streptomycin (68.7%) and tetracycline (35%). The majority of isolates was multidrug resistant and biofilm producer. MTT testing showed that vegetables isolates were significantly higher biofilm producers compared to foods of animal origins. This study showed that E. coli isolates from food products were reservoirs of genes encoding antibiotic-resistance and have a high propensity to produce biofilm.


Subject(s)
Escherichia coli , Vegetables , Animals , Biofilms , Drug Resistance, Microbial , Escherichia coli/genetics , Humans , Microbial Sensitivity Tests , Tunisia
11.
Viruses ; 15(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36680057

ABSTRACT

Epizootic haemorrhagic disease (EHD) is a Culicoides-borne viral disease caused by the epizootic haemorrhagic disease virus (EHDV) associated with clinical manifestations in domestic and wild ruminants, primarily white-tailed deer (Odocoileus virginianus) and cattle (Bos taurus). In late September 2021, EHDV was reported in cattle farms in central/western Tunisia. It rapidly spread throughout the country with more than 200 confirmed outbreaks. We applied a combination of classical and molecular techniques to characterize the causative virus as a member of the serotype EHDV-8. This is the first evidence of EHDV- 8 circulation since 1982 when the prototype EHDV-8 strain was isolated in Australia. This work highlights the urgent need for vaccines for a range of EHDV serotypes.


Subject(s)
Deer , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Animals , Cattle , Serogroup , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Tunisia/epidemiology , Ruminants
12.
Open Vet J ; 11(3): 337-341, 2021.
Article in English | MEDLINE | ID: mdl-34722193

ABSTRACT

Background: Rift Valley fever (RVF) is an infectious zoonotic disease infecting, mainly, domestic ruminants and causing significant economic and public health problems. RVF is a vector-borne disease transmitted by mosquitoes. Aim: In this work, we tried to seek any RVF virus circulation in Tunisia. Methods: Thus, we investigated 1,723 sera from different parts of Tunisia, collected in 2009 and 2013-2015 from sheep, goats, cattle, and dromedaries. All sera were assessed using enzyme-linked immunosorbent assay techniques. Results: Eighty-seven sera were detected positive and 11 doubtful. All of them were investigated by the virus-neutralization technique (VNT), which confirmed the positivity of three sera. Conclusion: This is the first case of RVF seropositive confirmed by the VNT in Tunisian ruminants. Such a result was expected considering the climate, entomology, and geographic location of the country. Further investigations must enhance our findings to understand the RVF epidemiologic situation better and implement risk-based surveillance programs and effective control strategies.


Subject(s)
Cattle Diseases , Goat Diseases , Rift Valley Fever , Sheep Diseases , Animals , Camelus , Cattle , Cattle Diseases/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary , Goat Diseases/epidemiology , Goats , Rift Valley Fever/epidemiology , Sheep , Sheep Diseases/epidemiology , Tunisia/epidemiology
13.
Onderstepoort J Vet Res ; 88(1): e1-e9, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34476951

ABSTRACT

The increasing threat of vector-borne diseases (VBDs) represents a great challenge to those who manage public and animal health. Determining the spatial distribution of arthropod vector species is an essential step in studying the risk of transmission of a vector-borne pathogen (VBP) and in estimating risk levels of VBD. Risk maps allow better targeting surveillance and help in designing control measures. We aimed to study the geographical distribution of Culicoides imicola, the main competent vector of Bluetongue virus (BTV) in sheep in Tunisia. Fifty-three records covering the whole distribution range of C.imicola in Tunisia were obtained during a 2-year field entomological survey (August 2017 - January 2018 and August 2018 - January 2019). The ecological niche of C. imicola is described using ecological-niche factor analysis (ENFA) and Mahalanobis distances factor analysis (MADIFA). An environmental suitability map (ESM) was developed by MaxEnt software to map the optimal habitat under the current climate background. The MaxEnt model was highly accurate with a statistically significant area under curve (AUC) value of 0.941. The location of the potential distribution of C. imicola is predicted in specified regions of Tunisia. Our findings can be applied in various ways such as surveillance and control program of BTV in Tunisia.


Subject(s)
Bluetongue virus , Bluetongue , Ceratopogonidae , Sheep Diseases , Animals , Bluetongue/epidemiology , Ecosystem , Insect Vectors , Sheep , Sheep Diseases/epidemiology , Tunisia/epidemiology
14.
Environ Sci Pollut Res Int ; 28(34): 46725-46737, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33241495

ABSTRACT

Hepatovirus A is known as a waterborne and foodborne virus that can be transmitted from one person to another through contaminated water and raw food. Therefore, it is necessary to survey the circulation of this type of enteric virus in the wastewater to prevent prospective outbreaks. Wastewater samples collected from WWTP El Menzeh I and Charguia I have been the subject for physicochemical, bacteriological (MPN) and virological analyses. Hepatovirus A (HAV) detection was carried out using the standard reverse transcription-polymerase chain reaction (RT-PCR). Hepatovirus A was detected respectively in 62% (63/102) and 66% (92/140) of the collected wastewater samples at El Menzeh I and Charguia I WWTPs. The treated effluent by natural oxidizing lagoon procedure was characterized by a poor physical-chemical and virological qualities but with excellent bacteriological quality. Consequently, this effluent is not suitable to be recycled and reused in agriculture or even dismissed in the environment. The treated sewage by activated sludge and rotating biodisk procedures turned out to be of a very good physical-chemical quality but with a poor bacteriological and virological quality. After tertiary UV-C254 nm irradiation, the faecal indicator bacteria concentration was mostly reduced and removed. These findings confirmed the need for improvement and upgrade of the treatment processes used in these two studied sewage purification plants and the necessity of implementation and establishment of a proper national virological standard to control the circulation rates of enteric viruses in Tunisian municipal wastewater.


Subject(s)
Wastewater , Water Purification , Hepatovirus , Humans , Prospective Studies , Sewage
15.
FEMS Microbiol Ecol ; 97(3)2021 03 10.
Article in English | MEDLINE | ID: mdl-33202005

ABSTRACT

This study evaluated the occurrence of extended-spectrum ß-lactamases (ESBL) and associated resistance genes, integrons, and plasmid types, as well as the genetic relatedness of enterobacterial isolates in the wastewater treatment plant (WWTP) of La Charguia, Tunis City (Tunisia). A total of 100 water samples were collected at different points of the sewage treatment process during 2017-2019. Antimicrobial susceptibility was conducted by the disc-diffusion method. blaCTX-M, blaTEM and blaSHV genes as well as those encoding non-ß-lactam resistance, the plasmid types, occurrence of class1 integrons and phylogenetic groups of Escherichia coli isolates were determined by PCR/sequencing. Genomic relatedness was determined by multi-locus sequence typing (MLST) for selected isolates. In total, 57 ESBL-producer isolates were recovered (47 E. coli, eight Klebsiella pneumoniae, 1 of the Citrobacter freundii complex and 1 of the Enterobacter cloacae complex). The CTX-M-15 enzyme was the most frequently detected ESBL, followed by CTX-M-27, CTX-M-55 and SHV-12. One E. coli isolate harboured the mcr-1 gene. The following phylogroups/sequence types (STs) were identified among ESBL-producing E. coli isolates: B2/ST131 (subclade-C1), A/ST3221, A/ST8900, D/ST69, D/ST2142, D/ST38, B1/ST2460 and B1/ST6448. High numbers of isolates harboured the class 1 integrons with various gene cassette arrays as well as IncP-1 and IncFIB plasmids. Our findings confirm the importance of WWTPs as hotspot collectors of ESBL-producing Enterobacteriaceae with a high likelihood of spread to human and natural environments.


Subject(s)
Escherichia coli Proteins , Water Purification , Anti-Bacterial Agents/pharmacology , Colistin , Enterobacteriaceae/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny , Plasmids/genetics , Tunisia , beta-Lactamases/genetics
16.
Environ Sci Pollut Res Int ; 27(35): 44368-44377, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32767214

ABSTRACT

Aquatic environments are crucial hotspots for the dissemination of antibiotic resistant microorganisms and resistance genes. Thus, the purpose of this study was to investigate the occurrence and the genetic characterization of cefotaxime-resistant (CTXR) Enterobacteriaceae at a Tunisian semi-industrial pilot plant with biological treatment (WWPP) and its receiving river (Rouriche River, downstream from WWPP) located in Tunis City, during 2017-2018. We collected 105 and 15 water samples from the WWPP and the Rouriche River, respectively. Samples were screened to recover ESBL-producing Enterobacteriaceae (ESBL-E) and isolates were characterized for phenotype/genotype of antimicrobial resistance, integrons, plasmid types and molecular typing (multilocus sequence typing, MLST). Among 120 water samples, 33 and 4 contained ESBL-producing E. coli and K. pneumoniae isolates, respectively. Most isolates were multidrug resistant and produced CTX-M-15 (28 isolates), CTX-M-1 (4 isolates), CTX-M-55 (2 isolates), CTX-M-27 (one isolate), SHV-12 (one isolate) and VEB beta-lactamases (one isolate). All K. pneumoniae were CTX-M-15-positive. Four colistin-resistant isolates were found (MIC 4-8 µg/ml), but they were negative for the mcr genes tested. Class 1 integrons were detected in 21/25 trimethoprim/sulfamethoxazole-resistant isolates, and nine of them carried the gene cassette arrays: aadA2 + dfrA12 (n = 4), aadA1 + dfrA15 (n = 2), aadA5 + dfrA17 (n = 2) and aadA1/2 (n = 1). The IncP and IncFIB plasmids were found in 30 and 16 isolates, respectively. Genetic lineages detected were as follows: E. coli (ST48-ST10 Cplx, ST2499, ST906, ST2973 and ST2142); K. pneumoniae: (ST1540 and ST661). Our findings show a high rate of CTX-M-15 and high genetic diversity of ESBL-E isolates from WWPP and receiving river water.


Subject(s)
Escherichia coli , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Genetic Variation , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , Tunisia , Wastewater , beta-Lactamases/genetics
17.
Food Environ Virol ; 12(3): 250-259, 2020 09.
Article in English | MEDLINE | ID: mdl-32607705

ABSTRACT

The molecular detection of Norovirus GI and Norovirus GII in the Tunisian industrial wastewater treatment plant of Charguia I was conducted to test the effectiveness of secondary biological treatment using the activated sludge procedure and the UV-C254 tertiary treatment radiation using a UV disinfection prototype to upgrade the quality of the purified wastewater. A total of 140 sewage samples were collected from the two lines of sewage treatment procedures. Norovirus GI and Norovirus GII have been found and quantified using Real-Time Reverse Transcription Polymerase Chain Reaction (qRT-PCR) in 66.4 and 86.4% of the collected wastewater samples. The Norovirus GI and GII mean concentration values got in the treated effluents showed a significant decrease of Norovirus viral content rates detected from upstream to downstream of activated sludge procedures and at the output of UV-C254 treatment. These findings characterise and denote for the first time the effectiveness of biological and UV-C254 treatment for Norovirus GI and Norovirus GII removal in Tunis City, northern Tunisia. Also, these data underlined the fact that purified sewage makes up a route of gastroenteritis virus transmission and a cause of viral gastroenteritis associated with water-borne and food-borne outbreaks.


Subject(s)
Norovirus/radiation effects , Sewage/virology , Virus Inactivation/radiation effects , Water Purification/methods , Genotype , Norovirus/classification , Norovirus/genetics , Norovirus/physiology , Real-Time Polymerase Chain Reaction , Sewage/analysis , Tunisia , Ultraviolet Rays , Wastewater/analysis , Wastewater/virology , Water Purification/instrumentation
18.
Environ Sci Pollut Res Int ; 27(6): 5718-5729, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31177419

ABSTRACT

Enteric viruses, generally found in sewage, are recognized as the main cause of waterborne and foodborne public health outbreaks. Among leading enteric viruses, the Rotavirus A (RVA) detection in wastewater appeared to be a novel approach to monitor the emergence of these viruses in some countries where the viral gastroenteritis surveillance is almost absent such as in Tunisia. The RVA detection and quantification in an industrial sewage purification plant of Charguia I (Tunis, Tunisia) were achieved to evaluate the performance of activated sludge procedures coupled to a macrofiltration monolamp ultraviolet irradiation type C (UV-C254) disinfection reactor. This UV-C254 system was preceded by a fiberglass cartridge filter system with an average porosity of 45 µm to clarify the water and thus increase its UV transmittance. A total of 140 composite sewage samples was collected from this line of treatment and analyzed for RVA detection. The detection and the viral load quantification of RVA were performed using real-time reverse transcription polymerase chain reaction (RT-PCR). The virological results showed in general that RVA were detected at high frequency of 98% (137/140). In fact, the RVA detection rates at the exit of the two studied wastewater treatment were about 100% at the exit of the activated sludge procedure. It means that all wastewater sampled at this last step of treatment was positive for RVA detection. On the other hand, 92.5% of the wastewater samples taken at the exit of the monolamp UV-C254 reactor were positive for the RVA. However, the RVA quantification results expressed as viral load showed a significant reduction in the means of RVA viral loads at the exit of the biological activated sludge procedure and the tertiary UV-C254 treatment, showing in general an improved treated wastewater virological quality. Therefore, the RVA load removal rates recorded at the two successive stages of treatment, the activated sludge and the UV-C254 treatment, were around 85% and 73%, respectively, as compared to the one with 100% registered for the raw wastewater. In addition, good physical-chemical and bacteriological qualities of the treated sewage were found at the exit of the two considered wastewater treatment procedures. The present investigation represents the first Tunisian environmental report showing the good effectiveness and performance of the biological and the tertiary treatments for RVA removal. Therefore, an improved and an optimized tertiary disinfection treatment was needed since it could be a good means for getting better viral water quality and for minimizing the transmission and dissemination of human infectious viral diseases.


Subject(s)
Enterovirus , Rotavirus , Wastewater , Water Purification , Humans , Rotavirus/isolation & purification , Sewage , Tunisia
19.
Int J Food Microbiol ; 318: 108478, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-31855787

ABSTRACT

Avian industries have been reported as an important contributor in the worldwide spread of antibiotic resistance owing to some particular practices especially the overuse of antibiotics. Thus in this study, we aimed to characterize extended-spectrum-beta-lactamase (ESBL) and acquired-AmpC-beta-lactamase (aAmpC)-producing Escherichia coli isolates from chicken faeces and raw meat in Tunisia. During the year 2018, 286 faecal chicken swabs and 47 raw chicken meat samples were collected and processed to recover cefotaxime-resistant E. coli. Antimicrobial susceptibility was performed by disk-diffusion and/or broth-microdilution. blaTEM, blaSHV, blaCTX-M, and blaCMY genes were investigated by PCR/sequencing. Genes encoding resistance to colistin (mcr-1 to mcr-8), tetracycline (tetA/tetB), sulfonamide (sul1/sul3), and chloramphenicol (cmlA), were analysed by PCR. Class 1 integrons were investigated by PCR/sequencing. Phylogenetic groups of all isolates were determined. PFGE and MLST were performed for representative isolates. PCR-based replicon typing was performed in mcr1-harbouring isolates. Cefotaxime-resistant E. coli was detected in 22.4% (64/286) and 63.8% (30/47) of faeces and meat samples, respectively. Ninety isolates were ESBL-producers and harboured the genes: blaCTX-M-1 +/- blaTEM-1 (n = 65), blaCTX-M-55 +/- blaTEM-1 (n = 21), blaCTX-M-14 (n = 1), and blaSHV-12 (n = 3). The blaCMY-2 gene was detected in four ESBL-negative isolates. Isolates belonged to phylogroups D (50%), A (36.2%), B1 (9.6%), and B2 (4.3%). Fifty-four were colistin-resistant and 52 carried the mcr-1 gene. The tetA, sul1/sul3 and cmlA genes were detected among resistant isolates and 76 harboured class 1 integrons. MLST analysis revealed 13 sequence types (STs). The isolates were classified into 28 PFGE types. The IncP, IncFIB, and IncI1 replicons were detected among mcr-1-positive strains. We report a high frequency of ESBL-producers and colistin-resistant E. coli in chicken and derived food and the detection for the first time of blaCTX-M-55 in poultry in Tunisia.


Subject(s)
Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Poultry/microbiology , beta-Lactamases/genetics , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Resistance, Bacterial/drug effects , Escherichia coli/classification , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Proteins/metabolism , Feces/microbiology , Phylogeny , Prevalence , Tunisia , beta-Lactamases/metabolism
20.
Acta Trop ; 202: 105223, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31647898

ABSTRACT

Tunisia has experienced various West Nile disease outbreaks. Notwithstanding the serological and molecular confirmations in humans, horses and birds, the human surveillance system can still be improved. Three sentinel chicken flocks were placed in different Tunisian endemic regions and followed up from September 2016 to January 2017. A total of 422 sera from Sejnene (north of Tunisia), 392 from Moknine (east coast of Tunisia) and 386 from Tozeur (south of Tunisia) were tested for West Nile-specific antibodies and viral RNA. The WNV elisa positive rate in sentinel chickens in Sejnene was 10.7% (95% CI: 5.08-21.52). No positive samples were detected in Moknine. In Tozeur, the overall serological elisa positive rate during the study period was 9.8% (95% CI:4.35-21.03). West Nile virus nucleic acid was detected in two chickens in Sejnene.Phylogenetic analysis of one of the detected partial NS3 gene sequences showed that recent Tunisian WNV strain belong to WNV lineage 1 and is closely related to Italian strains detected in mosquitoes in 2016 and in a sparrow hawk in 2017. This report showed the circulation, first molecular detection and sequencing of WNV lineage 1 in chickens in the north of Tunisia and highlights the use of poultry as a surveillance tool to detect WNV transmission in a peri-domestic area.


Subject(s)
Chickens/virology , West Nile Fever/veterinary , West Nile virus/classification , Animals , Horses , Humans , Phylogeny , RNA, Viral/genetics , Sentinel Surveillance , Tunisia/epidemiology , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile virus/genetics , West Nile virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...