Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108343

ABSTRACT

Research in normal tissue radiobiology is in continuous progress to assess cellular response following ionizing radiation exposure especially linked to carcinogenesis risk. This was observed among patients with a history of radiotherapy of the scalp for ringworm who developed basal cell carcinoma (BCC). However, the involved mechanisms remain largely undefined. We performed a gene expression analysis of tumor biopsies and blood of radiation-induced BCC and sporadic patients using reverse transcription-quantitative PCR. Differences across groups were assessed by statistical analysis. Bioinformatic analyses were conducted using miRNet. We showed a significant overexpression of the FOXO3a, ATM, P65, TNF-α and PINK1 genes among radiation-induced BCCs compared to BCCs in sporadic patients. ATM expression level was correlated with FOXO3a. Based on receiver-operating characteristic curves, the differentially expressed genes could significantly discriminate between the two groups. Nevertheless, TNF-α and PINK1 blood expression showed no statistical differences between BCC groups. Bioinformatic analysis revealed that the candidate genes may represent putative targets for microRNAs in the skin. Our findings may yield clues as to the molecular mechanism involved in radiation-induced BCC, suggesting that deregulation of ATM-NF-kB signaling and PINK1 gene expression may contribute to BCC radiation carcinogenesis and that the analyzed genes could represent candidate radiation biomarkers associated with radiation-induced BCC.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Humans , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Carcinogenesis , Protein Kinases/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
3.
PLoS One ; 16(10): e0258777, 2021.
Article in English | MEDLINE | ID: mdl-34669720

ABSTRACT

Erythrokeratodermia variabilis (EKV) is a rare disorder of cornification usually associated with dominant mutations in the GJB3 and GJB4 genes encoding connexins (Cx)31 and 30.3. Genetic heterogeneity of EKV has already been suggested. We investigated at the clinical and genetic level a consanguineous Tunisian family with 2 sisters presenting an autosomal recessive form of EKV to better characterize this disease. Mutational analysis initially screened the connexin genes and Whole-exome sequencing (WES) was performed to identify the molecular aetiology of the particular EKV phenotype in the proband. Migratory shaped erythematous areas are the initial presenting sign followed by relatively stable hyperkeratotic plaques are the two predominates characteristics in both patients. However, remarkable variability of morphological and dominating features of the disease were observed between patients. In particular, the younger sister (proband) exhibited ichthyosiform-like appearance suggesting Autosomal Recessive Congenital Ichthyosis (ARCI) condition. No causative mutations were detected in the GJB3 and GJB4 genes. WES results revealed a novel missense homozygous mutation in NIPAL4 gene (c.835C>G, p.Pro279Ala) in both patients. This variant is predicted to be likely pathogenic. In addition, in silico analysis of the mutated 3D domain structure predicted that this variant would result in NIPA4 protein destabilization and Mg2+ transport perturbation, pointing out the potential role of NIPAL4 gene in the development and maintenance of the barrier function of the epidermis. Taken togheter, these results expand the clinical phenotype associated with NIPAL4 mutation and reinforce our hypothesis of NIPAL4 as the main candidate gene for the EKV-like ARCI phenotype.


Subject(s)
Erythrokeratodermia Variabilis/genetics , Exome Sequencing/methods , Mutation, Missense , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Child , Connexins/genetics , Consanguinity , Female , Humans , Infant , Molecular Docking Simulation , Pedigree , Phenotype , Protein Stability , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...