Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Toxicol Chem ; 40(12): 3392-3409, 2021 12.
Article in English | MEDLINE | ID: mdl-34592004

ABSTRACT

The US Environmental Protection Agency's short-term freshwater effluent test methods include a fish (Pimephales promelas), a cladoceran (Ceriodaphnia dubia), and a green alga (Raphidocelis subcapitata). There is a recognized need for additional taxa to accompany the three standard species for effluent testing. An appropriate additional taxon is unionid mussels because mussels are widely distributed, live burrowed in sediment and filter particles from the water column for food, and exhibit high sensitivity to a variety of contaminants. Multiple studies were conducted to develop a relevant and robust short-term test method for mussels. We first evaluated the comparative sensitivity of two mussel species (Villosa constricta and Lampsilis siliquoidea) and two standard species (P. promelas and C. dubia) using two mock effluents prepared by mixing ammonia and five metals (cadmium, copper, nickel, lead, and zinc) or a field-collected effluent in 7-day exposures. Both mussel species were equally or more sensitive (more than two-fold) to effluents compared with the standard species. Next, we refined the mussel test method by first determining the best feeding rate of a commercial algal mixture for three age groups (1, 2, and 3 weeks old) of L. siliquoidea in a 7-day feeding experiment, and then used the derived optimal feeding rates to assess the sensitivity of the three ages of juveniles in a 7-day reference toxicant (sodium chloride [NaCl]) test. Juvenile mussels grew substantially (30%-52% length increase) when the 1- or 2-week-old mussels were fed 2 ml twice daily and the 3-week-old mussels were fed 3 ml twice daily. The 25% inhibition concentrations (IC25s) for NaCl were similar (314-520 mg Cl/L) among the three age groups, indicating that an age range of 1- to 3-week-old mussels can be used for a 7-day test. Finally, using the refined test method, we conducted an interlaboratory study among 13 laboratories to evaluate the performance of a 7-day NaCl test with L. siliquoidea. Eleven laboratories successfully completed the test, with more than 80% control survival and reliable growth data. The IC25s ranged from 296 to 1076 mg Cl/L, with a low (34%) coefficient of variation, indicating that the proposed method for L. siliquoidea has acceptable precision. Environ Toxicol Chem 2021;40:3392-3409. © 2021 SETAC.


Subject(s)
Bivalvia , Unionidae , Water Pollutants, Chemical , Animals , Fresh Water , Toxicity Tests , Water Pollutants, Chemical/toxicity
2.
Environ Toxicol Chem ; 39(11): 2256-2268, 2020 11.
Article in English | MEDLINE | ID: mdl-32761946

ABSTRACT

The US Environmental Protection Agency (USEPA) is reviewing the protectiveness of the national ambient water quality criteria (WQC) for nickel (Ni) and zinc (Zn) and compiling toxicity databases to update the WQC. An amphipod (Hyalella azteca) and a unionid mussel (Lampsilis siliquoidea) have shown high sensitivity to Ni and Zn in previous studies. However, there remained uncertainties regarding the influence of test duration (48 vs 96 h) and the presence and absence of food in acute exposures with the amphipod, and there were also concerns about poor control of amphipod growth and reproduction and mussel growth in chronic exposures. We conducted acute 48- and 96-h water-only toxicity tests to evaluate the influence of feeding and test durations on the toxicity of dissolved Ni and Zn to the amphipod; we also used recently refined test methods to conduct chronic Ni and Zn toxicity tests to evaluate the sensitivity of the amphipod (6-wk exposure) and the mussel (4- and 12-wk exposures). The 96-h 50% effect concentrations (EC50s) of 916 µg Ni/L and 99 µg Zn/L from acute amphipod tests without feeding decreased from the 48-h EC50s by 62 and 33%, respectively, whereas the 96-h EC50s of 2732 µg Ni/L and 194 µg Zn/L from the tests with feeding decreased from the 48-h EC50s by 10 and 26%, indicating that the presence or absence of food had apparent implications for the 96-h EC50. Our chronic 6-wk EC20s for the amphipod (4.5 µg Ni/L and 35 µg Zn/L) were 50 to 67% lower than the 6-wk EC20s from previous amphipod tests, and our chronic 4-wk EC20s for the mussel (41 µg Ni/L and 66 µg Zn/L) were similar to or up to 42% lower than the 4-wk EC20s from previous mussel tests. The lower EC20s from the present study likely reflect more accurate estimates of inherent sensitivity to Ni and Zn due to the refined test conditions. Finally, increasing the chronic test duration from 4 to 12 wk substantially increased the toxicity of Zn to the mussel, whereas the 4- and 12-wk Ni effect needs to be re-evaluated to understand the large degree of variation in organism responses observed in the present study. Environ Toxicol Chem 2020;39:2256-2268. © 2020 SETAC.


Subject(s)
Amphipoda/drug effects , Bivalvia/drug effects , Nickel/toxicity , Toxicity Tests, Acute/methods , Toxicity Tests, Chronic/methods , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Amphipoda/growth & development , Amphipoda/physiology , Animals , Bivalvia/physiology , Female , Larva/drug effects , Larva/physiology , Water Pollutants, Chemical/chemistry , Water Quality
3.
Environ Toxicol Chem ; 39(5): 1071-1085, 2020 05.
Article in English | MEDLINE | ID: mdl-32113188

ABSTRACT

Elevated nitrate (NO3 ) and sulfate (SO4 ) in surface water are of global concern, and studies are needed to generate toxicity data to develop environmental guideline values for NO3 and SO4 . The present study was designed to fill existing gaps in toxicity databases by determining the acute and/or chronic toxicity of NO3 (tested as NaNO3 ) to a unionid mussel (Lampsilis siliquoidea), a midge (Chironomus dilutus), a fish (rainbow trout, Oncorhynchus mykiss), and 2 amphibians (Hyla versicolor and Lithobates sylvaticus), and to determine the acute and/or chronic toxicity of SO4 (tested as Na2 SO4 ) to 2 unionid mussels (L. siliquoidea and Villosa iris), an amphipod (Hyalella azteca), and 2 fish species (fathead minnow, Pimephales promelas and O. mykiss). Among the different test species, acute NO3 median effect concentrations (EC50s) ranged from 189 to >883 mg NO3 -N/L, and chronic NO3 20% effect concentrations (EC20s) based on the most sensitive endpoint ranged from 9.6 to 47 mg NO3 -N/L. The midge was the most sensitive species, and the trout was the least sensitive species in both acute and chronic NO3 exposures. Acute SO4 EC50s for the 2 mussel species (2071 and 2064 mg SO4 /L) were similar to the EC50 for the amphipod (2689 mg SO4 /L), whereas chronic EC20s for the 2 mussels (438 and 384 mg SO4 /L) were >2-fold lower than the EC20 of the amphipod (1111 mg SO4 /L), indicating the high sensitivity of mussels in chronic SO4 exposures. However, the fathead minnow, with an EC20 of 374 mg SO4 /L, was the most sensitive species in chronic SO4 exposures whereas the rainbow trout was the least sensitive species (EC20 > 3240 mg SO4 /L). The high sensitivity of fathead minnow was consistent with the finding in a previous chronic Na2 SO4 study. However, the EC20 values from the present study conducted in test water containing a higher potassium concentration (3 mg K/L) were >2-fold greater than those in the previous study at a lower potassium concentration (1 mg K/L), which confirmed the influence of potassium on chronic Na2 SO4 toxicity to the minnow. Environ Toxicol Chem 2020;39:1071-1085. © 2020 SETAC.


Subject(s)
Aquatic Organisms/drug effects , Fresh Water/chemistry , Nitrates/toxicity , Sulfates/toxicity , Toxicity Tests, Acute , Toxicity Tests, Chronic , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Animals , Bivalvia/drug effects , Chironomidae/drug effects , Female , Oncorhynchus mykiss/physiology , Species Specificity , Unionidae/drug effects , Water Quality
4.
Environ Toxicol Chem ; 39(6): 1196-1206, 2020 05.
Article in English | MEDLINE | ID: mdl-32043286

ABSTRACT

Aquatic insects are poorly represented in water quality criteria, and previous studies have suggested a lack of sensitivity in acute toxicity tests despite observational studies demonstrating the contrary. Our objectives were to determine the toxicity of nickel (Ni) and zinc (Zn) to the mayfly Neocloeon triangulifer in fed acute (96-h) and chronic exposures to estimate aqueous effect concentrations while acknowledging the importance of dietary exposure for these insects. For the chronic tests, we conducted preliminary full-life cycle (~25-30 d) and subchronic (14 d) exposures to compare the relative sensitivity of the 2 test durations under similar conditions (i.e., feeding rates). Observing similar sensitivity, we settled on 14 d as the definitive test duration. Furthermore, we conducted experiments to determine how much food could be added to a given volume of water while minimally impacting dissolved metal recovery; a ratio of food dry mass to water volume (<0.005) achieved this. In the 14-d tests, we obtained a median lethal concentration and most sensitive chronic endpoint of 147 and 23 µg/L dissolved Ni (acute to chronic ratio [ACR] = 6.4), respectively, and 81 (mean value) and 10 µg/L dissolved Zn (ACR = 8.1), respectively. The acute values are orders of magnitude lower than previously published values for mayflies, probably most importantly due to the presence of dietary exposure but also potentially with some influence of organism age and test temperature. Environ Toxicol Chem 2020;39:1196-1206. © 2020 SETAC.


Subject(s)
Ephemeroptera/drug effects , Nickel/toxicity , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Animals , Ephemeroptera/growth & development , Toxicity Tests, Acute , Toxicity Tests, Chronic
5.
Environ Toxicol Chem ; 37(12): 3050-3062, 2018 12.
Article in English | MEDLINE | ID: mdl-30129053

ABSTRACT

Freshwater mussels are generally underrepresented in toxicity databases used to derive water quality criteria, especially for long-term exposures. Multiple tests were conducted to determine the chronic toxicity of sodium chloride (NaCl) or potassium chloride (KCl) to a unionid mussel (fatmucket, Lampsilis siliquoidea). Initially, a 4-wk NaCl test and a 4-wk KCl test were conducted starting with 2-mo-old mussels in water exposures with and without a thin layer of sand substrate. A feeding study was conducted later to refine test conditions for longer-term 12-wk exposures, and 3 chronic NaCl tests were then conducted following the refined method to assess the influence of test duration (4-12 wk) and age of organisms (starting age ∼1 wk to 2 mo) on mussel sensitivity. Biomass (total dry wt of surviving mussels in a replicate) was generally a more sensitive endpoint compared to survival and growth (length and dry wt). In the 4-wk NaCl or KCl test started with 2-mo-old juveniles, a 20% effect concentration (EC20) based on biomass (264 mg Cl/L from the NaCl test or 8.7 mg K/L from the KCl test) in the exposure with sand was 2-fold lower than the EC20 in the exposure without sand. The longer-term 12-wk NaCl tests started with the 1-wk-old and 2-mo-old juveniles were successfully completed under refined test conditions based on the feeding study, and younger juveniles were more sensitive to NaCl than older juveniles. The NaCl toxicity did not substantially change with extended exposure periods from 4 to 12 wk, although the 4-wk EC20s for biomass were slightly greater (up to 37%) than the 12-wk EC20s in the 2 longer-term exposures. Including the toxicity data from the present study into existing databases would rank fatmucket the most sensitive species to KCl and the second most sensitive species to NaCl for all freshwater organisms. Environ Toxicol Chem 2018;37:3050-3062. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Bivalvia/drug effects , Environmental Exposure , Potassium Chloride/toxicity , Sodium Chloride/toxicity , Toxicity Tests, Chronic , Water Pollutants, Chemical/toxicity , Animals , Female , Reference Standards , Water Quality
6.
Environ Toxicol Chem ; 37(12): 3041-3049, 2018 12.
Article in English | MEDLINE | ID: mdl-29920756

ABSTRACT

Freshwater mussels (order Unionoida) are one of the most imperiled groups of animals in the world. However, many ambient water quality criteria and other environmental guideline values do not include data for freshwater mussels, in part because mussel toxicity test methods are comparatively new and data may not have been available when criteria and guidelines were derived. The objectives of the present study were to evaluate the acute toxicity of sodium chloride (NaCl) and potassium chloride (KCl) to larvae (glochidia) and/or juveniles of a unionid mussel (fatmucket, Lampsilis siliquoidea) and to determine the potential influences of water hardness (50, 100, 200, and 300 mg/L as CaCO3 ) and other major ions (Ca, K, SO4 , or HCO3 ) on the acute toxicity of NaCl to the mussels. From the KCl test, the 50% effect concentration (EC50) for fatmucket glochidia was 30 mg K/L, similar to or slightly lower than the EC50s for juvenile fatmucket (37-46 mg K/L) tested previously in our laboratory. From the NaCl tests, the EC50s for glochidia increased from 441 to 1597 mg Cl/L and the EC50s for juvenile mussels increased from 911 to 3092 mg Cl/L with increasing water hardness from 50 to 300 mg/L. Increasing K from 0.4 to 1.9 mg/L, SO4 from 13 to 40 mg/L, or HCO3 from 44 to 200 mg/L in the 50 mg/L hardness water did not substantially change the NaCl EC50s for juvenile mussels, whereas increasing Ca from 9.9 to 42 mg/L increased the EC50s by a factor of 2. The overall results indicate that glochidia were equally or more sensitive to NaCl and KCl compared with juvenile mussels and that the increased water hardness ameliorated the acute toxicity of NaCl to glochidia and juveniles. These responses rank fatmucket among the most acutely sensitive freshwater organisms to NaCl and KCl. Environ Toxicol Chem 2018;37:3041-3049. © 2018 SETAC. This article is a US government work and, as such, is in thepublic domain in the United States of America.


Subject(s)
Bivalvia/drug effects , Environmental Exposure/analysis , Potassium Chloride/toxicity , Sodium Chloride/toxicity , Toxicity Tests, Acute , Water Pollutants, Chemical/toxicity , Animals , Female , Ions , Larva/drug effects , Water Quality
7.
Environ Toxicol Chem ; 36(3): 786-796, 2017 03.
Article in English | MEDLINE | ID: mdl-27699830

ABSTRACT

Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r2 = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In contrast, the EC50s of fatmucket tested in the single-species study were in the high percentiles (>75th) of species sensitivity distributions for 6 of 7 organic chemicals, indicating mussels might be relatively insensitive to organic chemicals in acute exposures. Environ Toxicol Chem 2017;36:786-796. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Fresh Water/chemistry , Unionidae/drug effects , Water Pollutants, Chemical/toxicity , Animals , Female , Larva/drug effects , Lethal Dose 50 , Reproduction/drug effects , Species Specificity , Toxicity Tests, Acute , Water Pollutants, Chemical/chemistry , Water Quality
8.
Article in English | MEDLINE | ID: mdl-27612666

ABSTRACT

Surface water concentrations of the synthetic estrogen 17α-ethinylestradiol (EE2) as low as 1ng/L can cause adverse reproductive effects in fish under acute and chronic exposure conditions, whereas higher concentrations (> 5ng/L) in acute studies are necessary to elicit adverse effects in freshwater mussels. Prolonged chronic exposures of freshwater mussels to EE2 remain un-evaluated. An extended duration testing paradigm was used to examine reproductive and biochemical (carbohydrate, lipid, protein) effects of EE2 on the unionid mussel, Elliptio complanata, throughout its reproductive cycle. Mussels were exposed to a control and EE2 concentrations (5 and 50ng/L) in six discrete and sequential 28 d tests, and in one discrete and simultaneous 180 d test, from February through August. Foot protrusion and siphoning behavior were recorded daily, along with conglutinate releases and larval (glochidia) mortality. Gonad, hemolymph, and gonad fluid samples were taken for biochemical and vitellogenin-like protein (Vtg) analysis post-exposure. Female mussels released eggs and conglutinates during the months of April to June, indicating sexual maturation during this time. Conglutinates released in the 5ng/L treatment in 28 d exposures contained fewer glochidia and more eggs, and increased concentrations of Vtg in hemolymph were observed from April to August in the 5ng/L treatment during the 180 d exposure. Results indicate that the 180 d test approach, concurrent with the sequence of 28 d tests, enabled a more robust evaluation of mussel behavior and physiology than would have been possible with a single short-term (28 d) test.


Subject(s)
Ethinyl Estradiol/toxicity , Toxicity Tests, Chronic , Unionidae/drug effects , Water Pollutants, Chemical/toxicity , Alkaline Phosphatase/metabolism , Animals , Behavior, Animal/drug effects , Biomarkers/metabolism , Carbohydrate Metabolism/drug effects , Female , Gonads/drug effects , Gonads/metabolism , Hemolymph/metabolism , Larva/drug effects , Larva/metabolism , Lipid Metabolism/drug effects , Male , Reproduction/drug effects , Seasons , Sex Factors , Time Factors , Unionidae/embryology , Unionidae/metabolism , Vitellogenins/metabolism
9.
Environ Toxicol Chem ; 36(3): 797-806, 2017 03.
Article in English | MEDLINE | ID: mdl-28019706

ABSTRACT

Vernal pool fairy shrimp, Branchinecta lynchi, (Branchiopoda; Anostraca) and other fairy shrimp species have been listed as threatened or endangered under the US Endangered Species Act. Because few data exist about the sensitivity of Branchinecta spp. to toxic effects of contaminants, it is difficult to determine whether they are adequately protected by water quality criteria. A series of acute (24-h) lethality/immobilization tests was conducted with 3 species of fairy shrimp (B. lynchi, Branchinecta lindahli, and Thamnocephalus platyurus) and 10 chemicals with varying modes of toxic action: ammonia, potassium, chloride, sulfate, chromium(VI), copper, nickel, zinc, alachlor, and metolachlor. The same chemicals were tested in 48-h tests with other branchiopods (the cladocerans Daphnia magna and Ceriodaphnia dubia) and an amphipod (Hyalella azteca), and in 96-h tests with snails (Physa gyrina and Lymnaea stagnalis). Median effect concentrations (EC50s) for B. lynchi were strongly correlated (r2 = 0.975) with EC50s for the commercially available fairy shrimp species T. platyurus for most chemicals tested. Comparison of EC50s for fairy shrimp and EC50s for invertebrate taxa tested concurrently and with other published toxicity data indicated that fairy shrimp were relatively sensitive to potassium and several trace metals compared with other invertebrate taxa, although cladocerans, amphipods, and mussels had similar broad toxicant sensitivity. Interspecies correlation estimation models for predicting toxicity to fairy shrimp from surrogate species indicated that models with cladocerans and freshwater mussels as surrogates produced the best predictions of the sensitivity of fairy shrimp to contaminants. The results of these studies indicate that fairy shrimp are relatively sensitive to a range of toxicants, but Endangered Species Act-listed fairy shrimp of the genus Branchinecta were not consistently more sensitive than other fairy shrimp taxa. Environ Toxicol Chem 2017;36:797-806. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Anostraca/drug effects , Cladocera/drug effects , Daphnia/drug effects , Fresh Water/chemistry , Water Pollutants, Chemical/toxicity , Animals , Geologic Sediments/chemistry , Seasons , Species Specificity , Toxicity Tests , United States , Water Pollutants, Chemical/chemistry
10.
Environ Toxicol Chem ; 35(10): 2439-2447, 2016 10.
Article in English | MEDLINE | ID: mdl-26932313

ABSTRACT

Studies have been conducted to refine US Environmental Protection Agency, ASTM International, and Environment Canada standard methods for conducting 42-d reproduction tests with Hyalella azteca in water or in sediment. Modifications to the H. azteca method include better-defined ionic composition requirements for exposure water (i.e., >15 mg/L of chloride and >0.02 mg/L of bromide) and improved survival, growth, and reproduction with alternate diets provided as increased rations over time in water-only or whole-sediment toxicity tests. A total of 24 laboratories volunteered to participate in the present interlaboratory study evaluating the performance of H. azteca in 42-d studies in control sand or control sediment using the refined methods. Improved growth and reproduction of H. azteca was observed with 2 alternate diets of 1) ramped diatoms (Thalassiosira weissflogii) + ramped Tetramin or 2) yeast-cerophyll-trout chow (YCT) + ramped Tetramin, especially when compared with results from the traditional diet of 1.8 mg YCT/d. Laboratories were able to meet proposed test acceptability criteria and in most cases had lower variation in growth or reproduction compared with previous interlaboratory studies using the traditional YCT diet. Laboratory success in conducting 42-d H. azteca exposures benefited from adherence to several key requirements of the detailed testing, culturing, and handling methods. Results from the present interlaboratory study are being used to help revise standard methods for conducting 10-d to 42-d water or sediment toxicity exposures with H. azteca. Environ Toxicol Chem 2016;35:2439-2447. © 2016 SETAC.


Subject(s)
Amphipoda/drug effects , Geologic Sediments/chemistry , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Amphipoda/growth & development , Amphipoda/physiology , Animals , Laboratories/standards , Reproduction/drug effects , Time Factors , Toxicity Tests/standards , Water Pollutants, Chemical/chemistry , Water Quality
11.
Environ Toxicol Chem ; 35(1): 115-27, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26139383

ABSTRACT

The acute and chronic toxicity of sulfate (tested as sodium sulfate) was determined in diluted well water (hardness of 100 mg/L and pH 8.2) with a cladoceran (Ceriodaphnia dubia; 2-d and 7-d exposures), a midge (Chironomus dilutus; 4-d and 41-d exposures), a unionid mussel (pink mucket, Lampsilis abrupta; 4-d and 28-d exposures), and a fish (fathead minnow, Pimephales promelas; 4-d and 34-d exposures). Among the 4 species, the cladoceran and mussel were acutely more sensitive to sulfate than the midge and fathead minnow, whereas the fathead minnow was chronically more sensitive than the other 3 species. Acute-to-chronic ratios ranged from 2.34 to 5.68 for the 3 invertebrates but were as high as 12.69 for the fish. The fathead minnow was highly sensitive to sulfate during the transitional period from embryo development to hatching in the diluted well water, and thus, additional short-term (7- to 14-d) sulfate toxicity tests were conducted starting with embryonic fathead minnow in test waters with different ionic compositions at a water hardness of 100 mg/L. Increasing chloride in test water from 10 mg Cl/L to 25 mg Cl/L did not influence sulfate toxicity to the fish, whereas increasing potassium in test water from 1 mg K/L to 3 mg K/L substantially reduced the toxicity of sulfate. The results indicate that both acute and chronic sulfate toxicity data, and the influence of potassium on sulfate toxicity to fish embryos, need to be considered when environmental guidance values for sulfate are developed or refined.


Subject(s)
Aquatic Organisms , Bivalvia/drug effects , Cladocera/drug effects , Cyprinidae , Fresh Water/analysis , Sulfates/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chlorides/toxicity , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Potassium/toxicity , Species Specificity , Toxicity Tests, Acute , Toxicity Tests, Chronic
SELECTION OF CITATIONS
SEARCH DETAIL
...