Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Med Device ; 17(1): 011009, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36890857

ABSTRACT

Emergency medical service (EMS) providers have a higher potential exposure to infectious agents than the general public (Nguyen et al., 2020, "Risk of COVID-19 Among Frontline Healthcare Workers and the General Community: A Prospective Cohort Study," Lancet Pub. Health, 5(9), pp. e475-e483; Brown et al., 2021, "Risk for Acquiring Coronavirus Disease Illness Among Emergency Medical Service Personnel Exposed to Aerosol-Generating Procedures," Emer. Infect. Disease J., 27(9), p. 2340). The use of protective equipment may reduce, but does not eliminate their risk of becoming infected as a result of these exposures. Prehospital environments have a high risk of disease transmission exposing EMS providers to bioaerosols and droplets from infectious patients. Field intubation procedures may be performed causing the generation of bioaerosols, thereby increasing the exposure of EMS workers to pathogens. Additionally, ambulances have a reduced volume compared to a hospital treatment space, often without an air filtration system, and no control mechanism to reduce exposure. This study evaluated a containment plus filtration intervention for reducing aerosol concentrations in the patient module of an ambulance. Aerosol concentration measurements were taken in an unoccupied research ambulance at National Institute for Occupational Safety and Health (NIOSH) Cincinnati using a tracer aerosol and optical particle counters (OPCs). The evaluated filtration intervention was a containment pod with a high efficiency particulate air (HEPA)-filtered extraction system that was developed and tested based on its ability to contain, capture, and remove aerosols during the intubation procedure. Three conditions were tested (1) baseline (without intervention), (2) containment pod with HEPA-1, and (3) containment pod with HEPA-2. The containment pod with HEPA-filtered extraction intervention provided containment of 95% of the total generated particle concentration during aerosol generation relative to the baseline condition, followed by rapid air cleaning within the containment pod. This intervention can help reduce aerosol concentrations within ambulance patient modules while performing aerosol-generating procedures.

2.
Int J Toxicol ; 41(4): 312-328, 2022 08.
Article in English | MEDLINE | ID: mdl-35586871

ABSTRACT

This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 µg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.


Subject(s)
Acrylonitrile , Air Pollution, Indoor , Acrylonitrile/toxicity , Air Pollution, Indoor/analysis , Butadienes/toxicity , Epithelial Cells , Humans , Particle Size , Particulate Matter , Printing, Three-Dimensional , Styrene/analysis , Styrene/toxicity
4.
J Chem Health Saf ; 28(3): 190-200, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-35979329

ABSTRACT

The literature on emissions during material extrusion additive manufacturing with 3-D printers is expanding; however, there is a paucity of data for large-format additive manufacturing (LFAM) machines that can extrude high-melt-temperature polymers. Emissions from two LFAM machines were monitored during extrusion of six polymers: acrylonitrile butadiene styrene (ABS), polycarbonate (PC), high-melt-temperature polysulfone (PSU), poly(ether sulfone) (PESU), polyphenylene sulfide (PPS), and Ultem (poly(ether imide)). Particle number, total volatile organic compound (TVOC), carbon monoxide (CO), and carbon dioxide (CO2) concentrations were monitored in real-time. Particle emission rate values (no./min) were as follows: ABS (1.7 × 1011 to 7.7 × 1013), PC (5.2 × 1011 to 3.6 × 1013), Ultem (5.7 × 1012 to 3.1 × 1013), PPS (4.6 × 1011 to 6.2 × 1012), PSU (1.5 × 1012 to 3.4 × 1013), and PESU (2.0 to 5.0 × 1013). For print jobs where the mass of extruded polymer was known, particle yield values (g-1 extruded) were as follows: ABS (4.5 × 108 to 2.9 × 1011), PC (1.0 × 109 to 1.7 × 1011), PSU (5.1 × 109 to 1.2 × 1011), and PESU (0.8 × 1011 to 1.7 × 1011). TVOC emission yields ranged from 0.005 mg/g extruded (PESU) to 0.7 mg/g extruded (ABS). The use of wall-mounted exhaust ventilation fans was insufficient to completely remove airborne particulate and TVOC from the print room. Real-time CO monitoring was not a useful marker of particulate and TVOC emission profiles for Ultem, PPS, or PSU. Average CO2 and particle concentrations were moderately correlated (r s = 0.76) for PC polymer. Extrusion of ABS, PC, and four high-melt-temperature polymers by LFAM machines released particulate and TVOC at levels that could warrant consideration of engineering controls. LFAM particle emission yields for some polymers were similar to those of common desktop-scale 3-D printers.

5.
J Chem Health Saf ; 28(4): 268-278, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-36147482

ABSTRACT

Extrusion of high-melt-temperature polymers on large-format additive manufacturing (LFAM) machines releases particles and gases, though there is no data describing their physical and chemical characteristics. Emissions from two LFAM machines were monitored during extrusion of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) polymers as well as high-melt-temperature Ultem (poly(ether imide)), polysulfone (PSU), poly(ether sulfone) (PESU), and polyphenylene sulfide (PPS) polymers. Filter samples of particles were collected for quantification of elements and bisphenol A and S (BPA, BPS) and visualization of morphology. Individual gases were quantified on substance-specific media. Aerosol sampling demonstrated that concentrations of elements were generally low for all polymers, with a maximum of 1.6 mg/m3 for iron during extrusion of Ultem. BPA, an endocrine disruptor, was released into air during extrusion of PC (range: 0.4 ± 0.1 to 21.3 ± 5.3 µg/m3). BPA and BPS (also an endocrine disruptor) were released into air during extrusion of PESU (BPA, 2.0-8.7 µg/m3; BPS, 0.03-0.07 µg/m3). Work surfaces and printed parts were contaminated with BPA (<8-587 ng/100 cm2) and BPS (<0.22-2.5 ng/100 cm2). Gas-phase sampling quantified low levels of respiratory irritants (phenol, SO2, toluene, xylenes), possible or known asthmagens (caprolactam, methyl methacrylate, 4-oxopentanal, styrene), and possible occupational carcinogens (benzene, formaldehyde, acetaldehyde) in air. Characteristics of particles and gases released by high-melt-temperature polymers during LFAM varied, which indicated the need for polymer-specific exposure and risk assessments. The presence of BPA and BPS on surfaces revealed a previously unrecognized source of dermal exposure for additive manufacturing workers using PC and PESU polymers.

6.
Inhal Toxicol ; 32(11-12): 403-418, 2020.
Article in English | MEDLINE | ID: mdl-33076715

ABSTRACT

BACKGROUND: Fused filament fabrication 3-D printing with acrylonitrile butadiene styrene (ABS) filament emits ultrafine particulates (UFPs) and volatile organic compounds (VOCs). However, the toxicological implications of the emissions generated during 3-D printing have not been fully elucidated. AIM AND METHODS: The goal of this study was to investigate the in vivo toxicity of ABS-emissions from a commercial desktop 3-D printer. Male Sprague Dawley rats were exposed to a single concentration of ABS-emissions or air for 4 hours/day, 4 days/week for five exposure durations (1, 4, 8, 15, and 30 days). At 24 hours after the last exposure, rats were assessed for pulmonary injury, inflammation, and oxidative stress as well as systemic toxicity. RESULTS AND DISCUSSION: 3-D printing generated particulate with average particle mass concentration of 240 ± 90 µg/m³, with an average geometric mean particle mobility diameter of 85 nm (geometric standard deviation = 1.6). The number of macrophages increased significantly at day 15. In bronchoalveolar lavage, IFN-γ and IL-10 were significantly higher at days 1 and 4, with IL-10 levels reaching a peak at day 15 in ABS-exposed rats. Neither pulmonary oxidative stress responses nor histopathological changes of the lungs and nasal passages were found among the treatments. There was an increase in platelets and monocytes in the circulation at day 15. Several serum biomarkers of hepatic and kidney functions were significantly higher at day 1. CONCLUSIONS: At the current experimental conditions applied, it was concluded that the emissions from ABS filament caused minimal transient pulmonary and systemic toxicity.


Subject(s)
Acrylic Resins/toxicity , Air Pollution, Indoor/adverse effects , Butadienes/toxicity , Inhalation Exposure/adverse effects , Particulate Matter/toxicity , Polystyrenes/toxicity , Printing, Three-Dimensional , Respiratory System/drug effects , Volatile Organic Compounds/toxicity , Acrylic Resins/pharmacokinetics , Aerosols , Air Pollution, Indoor/analysis , Animals , Biomarkers/metabolism , Blood Cell Count , Bronchoalveolar Lavage Fluid/chemistry , Butadienes/pharmacokinetics , Cytokines/blood , Male , Microscopy, Electron, Scanning , Oxidative Stress/drug effects , Particle Size , Particulate Matter/analysis , Particulate Matter/pharmacokinetics , Polystyrenes/pharmacokinetics , Rats, Sprague-Dawley , Respiratory System/metabolism , Respiratory System/ultrastructure , Volatile Organic Compounds/analysis , Volatile Organic Compounds/pharmacokinetics
7.
J Nanopart Res ; 22(2)2020 May 08.
Article in English | MEDLINE | ID: mdl-34552386

ABSTRACT

Recent studies have shown that high concentrations of ultrafine particles can be emitted during the 3D printing process. This study characterized the emissions from different filaments using common fused deposition modeling printers. It also assessed the effectiveness of a novel engineering control designed to capture emissions directly at the extruder head. Airborne particle and volatile organic compound concentrations were measured, and particle emission rates were calculated for several different 3D printer and filament combinations. Each printer and filament combination was tested inside a test chamber to measure overall emissions using the same print design for approximately 2 h. Emission rates ranged from 0.71 × 107 to 1400 × 107 particles/min, with particle geometric mean diameters ranging from 45.6 to 62.3 nm. To assess the effectiveness of a custom-designed engineering control, a 1-h print program using a MakerBot Replicator+ with Slate Gray Tough polylactic acid filament was employed. Emission rates and particle counts were evaluated both with and without the extruder head emission control installed. Use of the control showed a 98% reduction in ultrafine particle concentrations from an individual 3D printer evaluated in a test chamber. An assessment of the control in a simulated makerspace with 20 printers operating showed particle counts approached or exceeded 20,000 particles/cm3 without the engineering controls but remained at or below background levels (< 1000 particles/cm3) with the engineering controls in place. This study showed that a low-cost control could be added to existing 3D printers to significantly reduce emissions to the work environment.

8.
Toxicol Lett ; 317: 1-12, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31562913

ABSTRACT

During extrusion of some polymers, fused filament fabrication (FFF) 3-D printers emit billions of particles per minute and numerous organic compounds. The scope of this study was to evaluate FFF 3-D printer emission-induced toxicity in human small airway epithelial cells (SAEC). Emissions were generated from a commercially available 3-D printer inside a chamber, while operating for 1.5 h with acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) filaments, and collected in cell culture medium. Characterization of the culture medium revealed that repeat print runs with an identical filament yield various amounts of particles and organic compounds. Mean particle sizes in cell culture medium were 201 ±â€¯18 nm and 202 ±â€¯8 nm for PC and ABS, respectively. At 24 h post-exposure, both PC and ABS emissions induced a dose dependent significant cytotoxicity, oxidative stress, apoptosis, necrosis, and production of pro-inflammatory cytokines and chemokines in SAEC. Though the emissions may not completely represent all possible exposure scenarios, this study indicate that the FFF could induce toxicological effects. Further studies are needed to quantify the detected chemicals in the emissions and their corresponding toxicological effects.


Subject(s)
Acrylic Resins/toxicity , Butadienes/toxicity , Epithelial Cells/drug effects , Nanoparticles/toxicity , Polycarboxylate Cement/toxicity , Polystyrenes/toxicity , Printing, Three-Dimensional , Respiratory Mucosa/drug effects , Apoptosis/drug effects , Cells, Cultured , Cytokines/metabolism , Dose-Response Relationship, Drug , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Humans , Inflammation Mediators/metabolism , Necrosis , Oxidative Stress/drug effects , Particle Size , Respiratory Mucosa/metabolism , Respiratory Mucosa/ultrastructure , Risk Assessment , Time Factors
9.
Indoor Air ; 28(6): 840-851, 2018 11.
Article in English | MEDLINE | ID: mdl-30101413

ABSTRACT

Fused deposition modeling (FDM™) 3-dimensional printing uses polymer filament to build objects. Some polymer filaments are formulated with additives, though it is unknown if they are released during printing. Three commercially available filaments that contained carbon nanotubes (CNTs) were printed with a desktop FDM™ 3-D printer in a chamber while monitoring total particle number concentration and size distribution. Airborne particles were collected on filters and analyzed using electron microscopy. Carbonyl compounds were identified by mass spectrometry. The elemental carbon content of the bulk CNT-containing filaments was 1.5 to 5.2 wt%. CNT-containing filaments released up to 1010 ultrafine (d < 100 nm) particles/g printed and 106 to 108 respirable (d ~0.5 to 2 µm) particles/g printed. From microscopy, 1% of the emitted respirable polymer particles contained visible CNTs. Carbonyl emissions were observed above the limit of detection (LOD) but were below the limit of quantitation (LOQ). Modeling indicated that, for all filaments, the average proportional lung deposition of CNT-containing polymer particles was 6.5%, 5.7%, and 7.2% for the head airways, tracheobronchiolar, and pulmonary regions, respectively. If CNT-containing polymer particles are hazardous, it would be prudent to control emissions during use of these filaments.


Subject(s)
Imaging, Three-Dimensional , Nanotubes, Carbon , Polymers/chemistry , Environmental Monitoring/methods , Inhalation Exposure , Particulate Matter/analysis
10.
J Occup Environ Hyg ; 13(7): 538-48, 2016 07.
Article in English | MEDLINE | ID: mdl-26913983

ABSTRACT

Asphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road surface for recycling. The removal of the road surface has the potential to release respirable crystalline silica, to which workers can be exposed. This article describes an evaluation of respirable crystalline silica exposures to the operator and ground worker from two different half-lane and larger asphalt pavement milling machines that had ventilation dust controls and water-sprays designed and installed by the manufacturers. Manufacturer A completed milling for 11 days at 4 highway construction sites in Wisconsin, and Manufacturer B completed milling for 10 days at 7 highway construction sites in Indiana. To evaluate the dust controls, full-shift personal breathing zone air samples were collected from an operator and ground worker during the course of normal employee work activities of asphalt pavement milling at 11 different sites. Forty-two personal breathing zone air samples were collected over 21 days (sampling on an operator and ground worker each day). All samples were below 50 µg/m(3) for respirable crystalline silica, the National Institute for Occupational Safety and Health recommended exposure limit. The geometric mean personal breathing zone air sample was 6.2 µg/m(3) for the operator and 6.1 µg/m(3) for the ground worker for the Manufacturer A milling machine. The geometric mean personal breathing zone air sample was 4.2 µg/m(3) for the operator and 9.0 µg/m(3) for the ground worker for the Manufacturer B milling machine. In addition, upper 95% confidence limits for the mean exposure for each occupation were well below 50 µg/m(3) for both studies. The silica content in the bulk asphalt material being milled ranged from 7-23% silica for roads milled by Manufacturer A and from 5-12% silica for roads milled by Manufacturer B. The results indicate that engineering controls consisting of ventilation controls in combination with water-sprays are capable of controlling occupational exposures to respirable crystalline silica generated by asphalt pavement milling machines on highway construction sites.


Subject(s)
Air Pollutants, Occupational/analysis , Construction Industry , Inhalation Exposure/analysis , Occupational Exposure/analysis , Silicon Dioxide/analysis , Dust/analysis , Environmental Monitoring , Humans , Hydrocarbons , Indiana , Inhalation Exposure/prevention & control , Occupational Exposure/prevention & control , Wisconsin
11.
J Occup Environ Hyg ; 13(5): 356-71, 2016.
Article in English | MEDLINE | ID: mdl-26698920

ABSTRACT

Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers ("hosemen"). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 µg/m3, and 7 out of 12 exceeded the threshold limit value of 10 µg/m3, with means 38 µg/m3 for sprayers and 8.3 µg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m3 for hosemen. Total reactive isocyanate group--the total of monomer and oligomer as NCO group mass--showed 6 of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m3, with means 50.9 µg/m3 for sprayers and 7.29 µg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re-circulations, turbulence, and fugitive emissions, while wasting energy. Smoke releases showing more effective ventilation here than in other aircraft painting facilities carries technical feasibility relevance.


Subject(s)
Air Pollutants, Occupational/analysis , Aircraft , Chromium/analysis , Isocyanates/analysis , Occupational Exposure/prevention & control , Paint , Particulate Matter/analysis , Butanones/analysis , California , Ethane/analogs & derivatives , Ethane/analysis , Metals/analysis , Methyl n-Butyl Ketone/analysis , Military Personnel , Nitroparaffins/analysis , Occupational Exposure/analysis , Ventilation
12.
J Nanopart Res ; 172015 Nov.
Article in English | MEDLINE | ID: mdl-26705393

ABSTRACT

The evaluation of engineering controls for the production or use of carbon nanotubes (CNTs) was investigated at two facilities. These controls assessments are necessary to evaluate the current status of control performance and to develop proper control strategies for these workplaces. The control systems evaluated in these studies included ventilated enclosures, exterior hoods, and exhaust filtration systems. Activity-based monitoring with direct-reading instruments and filter sampling for microscopy analysis were used to evaluate the effectiveness of control measures at study sites. Our study results showed that weighing CNTs inside the biological safety cabinet can have a 37% reduction on the particle concentration in the worker's breathing zone, and produce a 42% lower area concentration outside the enclosure. The ventilated enclosures used to reduce fugitive emissions from the production furnaces exhibited good containment characteristics when closed, but they failed to contain emissions effectively when opened during product removal/harvesting. The exhaust filtration systems employed for exhausting these ventilated enclosures did not provide promised collection efficiencies for removing engineered nanomaterials from furnace exhaust. The exterior hoods were found to be a challenge for controlling emissions from machining nanocomposites: the downdraft hood effectively contained and removed particles released from the manual cutting process, but using the canopy hood for powered cutting of nanocomposites created 15%-20% higher ultrafine (<500 nm) particle concentrations at the source and at the worker's breathing zone. The microscopy analysis showed that CNTs can only be found at production sources but not at the worker breathing zones during the tasks monitored.

13.
J Occup Environ Hyg ; 11(10): 680-7, 2014.
Article in English | MEDLINE | ID: mdl-24649880

ABSTRACT

Exposures to diacetyl, a primary ingredient of butter flavoring, have been shown to cause respiratory disease among workers who mix flavorings. This study focused on evaluating ventilation controls designed to reduce emissions from the flavor mixing tanks, the major source of diacetyl in the plants. Five exhaust hood configurations were evaluated in the laboratory: standard hinged lid-opened, standard hinged lid-closed, hinged lid-slotted, dome with 38-mm gap, and dome with 114-mm gap. Tracer gas tests were performed to evaluate quantitative capture efficiency for each hood. A perforated copper coil was used to simulate an area source within the 1.2-meter diameter mixing tank. Capture efficiencies were measured at four hood exhaust flow rates (2.83, 5.66, 11.3, and 17.0 cubic meters per min) and three cross draft velocities (0, 30, and 60 meters per min). All hoods evaluated performed well with capture efficiencies above 90% for most combinations of exhaust volume and cross drafts. The standard hinged lid was the least expensive to manufacture and had the best average capture efficiency (over 99%) in the closed configuration for all exhaust flow rates and cross drafts. The hinged lid-slotted hood had some of the lowest capture efficiencies at the low exhaust flow rates compared to the other hood designs. The standard hinged lid performed well, even in the open position, and it provided a flexible approach to controlling emissions from mixing tanks. The dome hood gave results comparable to the standard hinged lid but it is more expensive to manufacture. The results of the study indicate that emissions from mixing tanks used in the production of flavorings can be controlled using simple inexpensive exhaust hoods.


Subject(s)
Air Pollution, Indoor/prevention & control , Diacetyl/analysis , Equipment Design , Flavoring Agents/analysis , Food-Processing Industry , Occupational Exposure/prevention & control , Ventilation/methods , Air Pollutants, Occupational/analysis
14.
J Occup Environ Hyg ; 11(7): D92-100; quiz D101-3, 2014.
Article in English | MEDLINE | ID: mdl-24568306

ABSTRACT

Investigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard. CO emissions were measured using various sampling techniques which included exhaust emission analyzers, detector tubes, evacuated containers (grab air samples analyzed by a gas chromatograph), and direct-reading CO monitors. CO results on houseboats equipped with gasoline-powered generators without emission controls indicated hazardous CO concentrations exceeding immediately dangerous to life and health (IDLH) levels in potentially occupied areas of the houseboat. Air sample results on houseboats that were equipped with engineering controls to remove the hazard were highly effective and reduced CO levels by over 98% in potentially occupied areas. The engineering control devices used to reduce the hazardous CO emissions from gasoline-powered generators on houseboats were extremely effective at reducing CO concentrations to safe levels in potentially occupied areas on the houseboats and are now beginning to be widely used.


Subject(s)
Air Pollution, Indoor/analysis , Carbon Monoxide Poisoning/prevention & control , Carbon Monoxide/analysis , Housing , Inhalation Exposure/analysis , Ships , Vehicle Emissions/analysis , Air Pollution, Indoor/statistics & numerical data , Engineering , Equipment Design , Gasoline , Humans , Inhalation Exposure/statistics & numerical data , National Institute for Occupational Safety and Health, U.S. , United States , Vehicle Emissions/poisoning
15.
Ann Occup Hyg ; 55(6): 591-600, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21597049

ABSTRACT

OBJECTIVES: A utility-scale wind turbine blade manufacturing plant requested assistance from the National Institute for Occupational Safety and Health (NIOSH) in controlling worker exposures to styrene at a plant that produced 37 and 42 m long fiber-reinforced wind turbine blades. The plant requested NIOSH assistance because previous air sampling conducted by the company indicated concerns about peak styrene concentrations when workers entered the confined space inside of the wind turbine blade. NIOSH researchers conducted two site visits and collected personal breathing zone and area air samples while workers performed the wind turbine blade manufacturing tasks of vacuum-assisted resin transfer molding (VARTM), gelcoating, glue wiping, and installing the safety platform. METHODS: All samples were collected during the course of normal employee work activities and analyzed for styrene using NIOSH Method 1501. All sampling was task based since full-shift sampling from a prior Occupational Safety and Health Administration (OSHA) compliance inspection did not show any exposures to styrene above the OSHA permissible exposure limit. During the initial NIOSH site visit, 67 personal breathing zone and 18 area air samples were collected while workers performed tasks of VARTM, gelcoating, glue wipe, and installation of a safety platform. After the initial site visit, the company made changes to the glue wipe task that eliminated the need for workers to enter the confined space inside of the wind turbine blade. During the follow-up site visit, 12 personal breathing zone and 8 area air samples were collected from workers performing the modified glue wipe task. RESULTS: During the initial site visit, the geometric means of the personal breathing zone styrene air samples were 1.8 p.p.m. (n = 21) for workers performing the VARTM task, 68 p.p.m. (n = 5) for workers installing a safety platform, and 340 p.p.m. (n = 14) for workers performing the glue wipe task, where n is the number of workers sampled for a given mean result. Gelcoating workers included job categories of millers, gelcoat machine operators, and gelcoaters. Geometric mean personal breathing zone styrene air samples were 150 p.p.m. (n = 6) for millers, 87 p.p.m. (n = 2) for the gelcoat machine operators, and 66 p.p.m. (n = 19) for gelcoaters. The geometric mean of the personal breathing zone styrene air samples from the glue wipe task measured during the follow-up site visit was 31 p.p.m. (n = 12). CONCLUSIONS: The closed molding VARTM process was very effective at controlling worker exposures to styrene. Personal breathing zone styrene air samples were reduced by an order of magnitude after changes were made to the glue wipe task. The company used chemical substitution to eliminate styrene exposure during the installation of the safety platform. Recommendations were provided to reduce styrene concentrations during gelcoating.


Subject(s)
Air Pollutants, Occupational/analysis , Inhalation Exposure/analysis , Occupational Exposure/analysis , Styrene/analysis , Adhesives/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Confined Spaces , Environmental Monitoring/methods , Humans , Industry , Inhalation Exposure/prevention & control , Inhalation Exposure/standards , Job Description , National Institute for Occupational Safety and Health, U.S. , Occupational Exposure/prevention & control , Occupational Exposure/standards , Resins, Synthetic/chemistry , Respiratory Protective Devices/standards , Risk Assessment , United States , Ventilation , Wind , Workplace/standards
16.
J Occup Environ Hyg ; 3(6): 308-16, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16627369

ABSTRACT

National Institute for Occupational Safety and Health (NIOSH) researchers evaluated two exhaust stack designs for reducing carbon monoxide (CO) exposures from gasoline-powered generator exhaust on houseboats. Tests were conducted (a) after dark, (b) in high-temperature and high-humidity environments, (c) during temperature inversions, (d) under various generator loads, and (e) at different houseboat trim angles. Two different designs of houseboat exhaust stacks were evaluated and compared with the side-exhaust configuration, which is standard on many houseboats. The two designs were flagpole and vertical stack. Both exhaust stacks performed dramatically better than the standard water level, side-exhaust configuration. The highest mean CO concentrations on the upper and lower decks of the houseboat with the vertical exhaust stack were 27 ppm and 17 ppm. The highest mean CO concentrations on the upper and lower decks of the houseboat with the modified flagpole stack were 5 ppm and 2 ppm. These findings are much lower than the 67 ppm and 341 ppm for the highest mean CO concentrations found on the upper and lower decks of houseboats having the usual side-exhausted configuration. The NIOSH evaluation also indicated that high-temperature and high-humidity levels, temperature inversions, generator loading, and houseboat trim angles had little effect on the exhaust stack performance. It also demonstrated the importance of proper design and installation of exhaust stacks to ensure that all exhaust gases are released through the stack. Based on the results of this work, NIOSH investigators continue to recommend that houseboat manufacturers, rental companies, and owners retrofit their gasoline-powered generators with exhaust stacks to reduce the hazard of CO poisoning and death to individuals on or near the houseboat.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Carbon Monoxide Poisoning/prevention & control , Carbon Monoxide/analysis , Ships , Vehicle Emissions/analysis , Air Pollutants/standards , Carbon Monoxide/standards , Carbon Monoxide/toxicity , Equipment Design , National Institute for Occupational Safety and Health, U.S./standards , United States , Vehicle Emissions/poisoning
SELECTION OF CITATIONS
SEARCH DETAIL
...