Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Evolution ; 75(10): 2568-2588, 2021 10.
Article in English | MEDLINE | ID: mdl-34437719

ABSTRACT

Environmental heterogeneity has led to the widespread evolution of phenotypic plasticity in all taxonomic groups. Although phenotypic plasticity has been examined from multiple perspectives, few studies have examined evolutionary patterns of plasticity within a phylogeny. We conducted common-garden experiments on 20 species of tadpoles, spanning three families, exposed for 4 weeks to a control, predator cues, or reduced food (i.e., increased intraspecific competition). We quantified tadpole activity, growth, and relative morphology and found widespread differences in species responses to predator cues and reduced food. We detected pervasive phylogenetic signals in traits within each environment, but the phylogenetic signal was much less common in the trait plasticities. Among different models of continuous character evolution, Brownian Motion and Ornstein Uhlenbeck models provided better fits to the data than the Early Burst model. Tadpole activity level in predator environments had much higher evolutionary rates than in the control and reduced-food environments; we did not see this pattern in the other traits. In comparing traits versus trait plasticities, activity evolved much faster than the plasticity of activity whereas morphological traits evolved much slower than morphological plasticities. Collectively, these results suggest that traits and trait plasticities can exhibit dramatically different evolutionary patterns.


Subject(s)
Adaptation, Physiological , Cues , Animals , Humans , Larva/genetics , Phenotype , Phylogeny
2.
Ecosphere ; 9(3)2018 Mar.
Article in English | MEDLINE | ID: mdl-30555728

ABSTRACT

For organisms with complex life cycles, climate change can have both direct effects and indirect effects that are mediated through plastic responses to temperature and that carry over beyond the developmental environment. We examined multiple responses to environmental warming in a dragonfly, a species whose life history bridges aquatic and terrestrial environments. We tested larval survival under warming and whether warmer conditions can create carry-over effects between life history stages. Rearing dragonfly larvae in an experimental warming array to simulate increases in temperature, we contrasted the effects of the current thermal environment with temperatures +2.5°C and +5°C above ambient, temperatures predicted for 50 and 100 years in the future for the study region. Aquatic mesocosms were stocked with dragonfly larvae (Erythemis collocata) and we followed survival of larvae to adult emergence. We also measured the effects of warming on the timing of the life history transition to the adult stage, body size of adults, and the relative size of their wings, an aspect of morphology key to flight performance. There was a trend toward reduced larval survival with increasing temperature. Warming strongly affected the phenology of adult emergence, advancing emergence by up to a month compared with ambient conditions. Additionally, our warmest conditions increased variation in the timing of adult emergence compared with cooler conditions. The increased variation with warming arose from an extended emergence season with fewer individuals emerging at any one time. Altered emergence patterns such as we observed are likely to place individuals emerging outside the typical season at greater risk from early and late season storms and will reduce effective population sizes during the breeding season. Contrary to expectations for ectotherms, body size was unaffected by warming. However, morphology was affected: at +5°C, dragonflies emerging from mesocosms had relatively smaller wings. This provides some of the first evidence that the effects of climate change on animals during their growth can have carry-over effects in morphology that will affect performance of later life history stages. In dragonflies, relatively smaller wings are associated with reduced flight performance, creating a link between larval thermal conditions and adult dispersal capacity.

3.
Evolution ; 72(3): 663-678, 2018 03.
Article in English | MEDLINE | ID: mdl-29345312

ABSTRACT

Environmental variation favors the evolution of phenotypic plasticity. For many species, we understand the costs and benefits of different phenotypes, but we lack a broad understanding of how plastic traits evolve across large clades. Using identical experiments conducted across North America, we examined prey responses to predator cues. We quantified five life-history traits and the magnitude of their plasticity for 23 amphibian species/populations (spanning three families and five genera) when exposed to no cues, crushed-egg cues, and predatory crayfish cues. Embryonic responses varied considerably among species and phylogenetic signal was common among the traits, whereas phylogenetic signal was rare for trait plasticities. Among trait-evolution models, the Ornstein-Uhlenbeck (OU) model provided the best fit or was essentially tied with Brownian motion. Using the best fitting model, evolutionary rates for plasticities were higher than traits for three life-history traits and lower for two. These data suggest that the evolution of life-history traits in amphibian embryos is more constrained by a species' position in the phylogeny than is the evolution of life history plasticities. The fact that an OU model of trait evolution was often a good fit to patterns of trait variation may indicate adaptive optima for traits and their plasticities.


Subject(s)
Adaptation, Physiological , Anura/physiology , Life History Traits , Olfactory Perception , Animals , Anura/growth & development , Astacoidea/chemistry , Biological Evolution , Embryo, Nonmammalian/physiology , Food Chain , Phylogeny , United States
4.
PLoS One ; 12(1): e0167882, 2017.
Article in English | MEDLINE | ID: mdl-28095428

ABSTRACT

Variation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different amphibian species and is implicated in numerous global amphibian population declines. Identifying key hosts in the amphibian-Bd system-those who are at greatest risk or who pose the greatest risk for others-is challenging due in part to many extrinsic environmental factors driving spatiotemporal Bd distribution and context-dependent host responses to Bd in the wild. One way to improve predictive risk models and generate testable mechanistic hypotheses about vulnerability is to complement what we know about the spatial epidemiology of Bd with data collected through comparative experimental studies. We used standardized pathogen challenges to quantify amphibian survival and infection trajectories across 20 post-metamorphic North American species raised from eggs. We then incorporated trait-based models to investigate the predictive power of phylogenetic history, habitat use, and ecological and life history traits in explaining responses to Bd. True frogs (Ranidae) displayed the lowest infection intensities, whereas toads (Bufonidae) generally displayed the greatest levels of mortality after Bd exposure. Affiliation with ephemeral aquatic habitat and breadth of habitat use were strong predictors of vulnerability to and intensity of infection and several other traits including body size, lifespan, age at sexual maturity, and geographic range also appeared in top models explaining host responses to Bd. Several of the species examined are highly understudied with respect to Bd such that this study represents the first experimental susceptibility data. Combining insights gained from experimental studies with observations of landscape-level disease prevalence may help explain current and predict future pathogen dynamics in the Bd system.


Subject(s)
Amphibians/microbiology , Chytridiomycota/pathogenicity , Communicable Diseases, Emerging/epidemiology , Ecology , Host-Pathogen Interactions , Mycoses/microbiology , Animals , Bufonidae/microbiology , Ecosystem , Phylogeny , Ranidae/microbiology
5.
Proc Natl Acad Sci U S A ; 113(4): 874-9, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26504225

ABSTRACT

Globally, large-bodied wild mammals are in peril. Because "megamammals" have a disproportionate influence on vegetation, trophic interactions, and ecosystem function, declining populations are of considerable conservation concern. However, this is not new; trophic downgrading occurred in the past, including the African rinderpest epizootic of the 1890s, the massive Great Plains bison kill-off in the 1860s, and the terminal Pleistocene extinction of megafauna. Examining the consequences of these earlier events yields insights into contemporary ecosystem function. Here, we focus on changes in methane emissions, produced as a byproduct of enteric fermentation by herbivores. Although methane is ∼ 200 times less abundant than carbon dioxide in the atmosphere, the greater efficiency of methane in trapping radiation leads to a significant role in radiative forcing of climate. Using global datasets of late Quaternary mammals, domestic livestock, and human population from the United Nations as well as literature sources, we develop a series of allometric regressions relating mammal body mass to population density and CH4 production, which allows estimation of methane production by wild and domestic herbivores for each historic or ancient time period. We find the extirpation of megaherbivores reduced global enteric emissions between 2.2-69.6 Tg CH4 y(-1) during the various time periods, representing a decrease of 0.8-34.8% of the overall inputs to tropospheric input. Our analyses suggest that large-bodied mammals have a greater influence on methane emissions than previously appreciated and, further, that changes in the source pool from herbivores can influence global biogeochemical cycles and, potentially, climate.


Subject(s)
Climate , Ecosystem , Extinction, Biological , Herbivory , Mammals/metabolism , Methane/analysis , Anaerobiosis , Animal Distribution , Animals , Animals, Domestic , Animals, Wild , Bison , Digestion , Disease Outbreaks/history , Disease Outbreaks/veterinary , Europe , Fermentation , Greenhouse Effect , History, Ancient , Human Activities , Humans , Ice , Methane/metabolism , Plant Dispersal , Plants, Edible , Rinderpest/history
6.
J Insect Sci ; 15: 140, 2015.
Article in English | MEDLINE | ID: mdl-26443777

ABSTRACT

Reducing the number of host-vector interactions is an effective way to reduce the spread of vector-borne diseases. Repellents are widely used to protect humans from a variety of protozoans, viruses, and nematodes. DEET (N,N-Diethyl-meta-toluamide), a safe and effective repellent, was developed during World War II. Fear of possible side effects of DEET has created a large market for "natural" DEET-free repellents with a variety of active ingredients. We present a comparative study on the efficacy of eight commercially available products, two fragrances, and a vitamin B patch. The products were tested using a human hand as attractant in a Y-tube olfactometer setup with Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), both major human disease vectors. We found that Ae. albopictus were generally less attracted to the test subject's hand compared with Ae, aegypti. Repellents with DEET as active ingredient had a prominent repellency effect over longer times and on both species. Repellents containing p-menthane-3,8-diol produced comparable results but for shorter time periods. Some of the DEET-free products containing citronella or geraniol did not have any significant repellency effect. Interestingly, the perfume we tested had a modest repellency effect early after application, and the vitamin B patch had no effect on either species. This study shows that the different active ingredients in commercially available mosquito repellent products are not equivalent in terms of duration and strength of repellency. Our results suggest that products containing DEET or p-menthane-3,8-diol have long-lasting repellent effects and therefore provide good protection from mosquito-borne diseases.


Subject(s)
Aedes , Insect Repellents , Adult , Animals , Cyclohexane Monoterpenes , DEET , Female , Humans , Insect Vectors , Menthol/analogs & derivatives , Oils, Volatile , Perfume
7.
Ecol Entomol ; 40(3): 211-220, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26028806

ABSTRACT

1. Organisms can respond to changing climatic conditions in multiple ways including changes in phenology, body size or morphology, and range shifts. Understanding how developmental temperatures affect insect life-history timing and morphology is crucial because body size and morphology affect multiple aspects of life history, including dispersal ability, while phenology can shape population performance and community interactions. 2. We experimentally assessed how developmental temperatures experienced by aquatic larvae affected survival, phenology, and adult morphology of dragonflies (Pachydiplax longipennis). Larvae were reared under 3 environmental temperatures: ambient, +2.5 °C, and +5 °C, corresponding to temperature projections for our study area 50 and 100 years in the future, respectively. Experimental temperature treatments tracked naturally-occurring variation. 3. We found clear effects of temperature in the rearing environment on survival and phenology: dragonflies reared at the highest temperatures had the lowest survival rates, and emerged from the larval stage approximately 3 weeks earlier than animals reared at ambient temperatures. There was no effect of rearing temperature on overall body size. Although neither the relative wing nor thorax size was affected by warming, a non-significant trend towards an interaction between sex and warming in relative thorax size suggests that males may be more sensitive to warming than females, a pattern that should be investigated further. 4. Warming strongly affected survival in the larval stage and the phenology of adult emergence. Understanding how warming in the developmental environment affects later life-history stages is critical to interpreting the consequences of warming for organismal performance.

8.
PLoS One ; 9(11): e113692, 2014.
Article in English | MEDLINE | ID: mdl-25411789

ABSTRACT

Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs' antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers.


Subject(s)
Bedbugs/physiology , Receptors, Odorant/metabolism , Animals , Arthropod Antennae/metabolism , Base Sequence , Bedbugs/classification , Behavior, Animal/drug effects , Contig Mapping , Female , Gene Library , Male , Molecular Sequence Data , Pheromones/chemistry , Pheromones/pharmacology , Phylogeny , Receptors, Odorant/chemistry , Receptors, Odorant/classification , Receptors, Odorant/genetics , Sequence Alignment , Sequence Analysis, RNA , Sexual Behavior, Animal/drug effects , Spermatozoa/metabolism
9.
Parasit Vectors ; 6: 211, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23866939

ABSTRACT

BACKGROUND: Sterile Insect Technique (SIT) has been successfully implemented to control, and in some cases, eradicate, dipteran insect populations. SIT has great potential as a mosquito control method. Different sterilization methods have been used on mosquitoes ranging from chemosterilization to genetically modified sterile male mosquito strains; however, sterilization with ionizing radiation is the method of choice for effective sterilization of male insects for most species. The lack of gentle radiation methods has resulted in significant complications when SIT has been applied to mosquitoes. Several studies report that irradiating mosquitoes resulted in a decrease in longevity and mating success compared to unirradiated males. The present study explored new protocols for mosquito sterilization with ionizing radiation that minimized detrimental effects on the longevity of irradiated males. METHODS: We tested three compounds that have been shown to act as radioprotectors in the mouse model system - ethanol, trimethylglycine, and beer. Male Aedes aegypti were treated with one of three chosen potential radioprotectors and were subsequently irradiated with identical doses of long-wavelength X-rays. We evaluated the effect of these radioprotectors on the longevity of male mosquito after irradiation. RESULTS: We found that X-ray irradiation with an absorbed dose of 1.17 gy confers complete sterility. Irradiation with this dose significantly shortened the lifespan of male mosquitoes and all three radioprotectors tested significantly enhanced the lifespan of irradiated mosquito males. CONCLUSION: Our results suggest that treatment with ethanol, beer, or trimethylglycine before irradiation can be used to enhance longevity in mosquitoes.


Subject(s)
Aedes/physiology , Aedes/radiation effects , Ethanol/administration & dosage , N-substituted Glycines/administration & dosage , Radiation-Protective Agents/administration & dosage , Aedes/drug effects , Animals , Beer , Male , Pest Control, Biological , Survival Analysis , Whole-Body Irradiation , X-Rays
10.
Evol Appl ; 5(6): 593-606, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23028400

ABSTRACT

Pesticides commonly occur in aquatic systems and pose a substantial challenge to the conservation of many taxa. Ecotoxicology has traditionally met this challenge by focusing on short-term, single-species tests and conducting risk assessments based on the most sensitive species tested. Rarely have ecotoxicology data been examined from an evolutionary perspective, and to our knowledge, there has never been a phylogenetic analysis of sensitivity, despite the fact that doing so would provide insights into patterns of sensitivity among species and identify which clades are the most sensitive to a particular pesticide. We examined phylogenetic patterns of pesticide sensitivity in amphibians, a group of conservation concern owing to global population declines. Using the insecticide endosulfan, we combined previously published results across seven species of tadpoles and added eight additional species from the families Bufonidae, Hylidae, and Ranidae. We found significant phylogenetic signal in the sensitivity to the insecticide and in the existence of time lag effects on tadpole mortality. Bufonids were less sensitive than hylids, which were less sensitive than the ranids. Moreover, mortality time lags were common in ranids, occasional in hylids, and rare in bufonids. These results highlight the importance of an evolutionary perspective and offer important insights for conservation.

11.
Environ Toxicol Chem ; 30(2): 446-54, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21038363

ABSTRACT

Toxicity assessments on nontarget organisms have largely been addressed using short-term, single-species laboratory experiments. Although extremely helpful, these experiments inherently lack many pervasive ecological stressors found in nature. Though a substantial challenge, incorporating these ecological stressors in contaminant studies would shed light on potential synergistic effects. For the world's leading herbicide, glyphosate, we know little about how natural stressors affect the toxicity to nontarget organisms. To explore how the natural stress of competition might interact with a glyphosate-based herbicide, we used outdoor mesocosms containing three tadpole species that were exposed to a factorial combination of three glyphosate concentrations (0, 1, 2, or 3 mg acid equivalent (a.e.)/L of the commercial formulation Roundup Original MAX®) and three tadpole densities (low, medium, or high). We found that increased tadpole density caused declines in tadpole growth, but also made the herbicide significantly more lethal to one species. Whereas the median lethal concentration (LC50) values were similar across all densities for gray treefrogs (Hyla versicolor; 1.7-2.3 mg a.e./L) and green frogs (Rana clamitans; 2.2-2.6 mg a.e./L), the LC50 values for bullfrogs (R. catesbeiana) were 2.1 to 2.2 mg a.e./L at low and medium densities, but declined to 1.6 mg a.e./L at high densities. The large decrease in amphibian survival with increased herbicide concentration was associated with increases in periphyton abundance. We also found evidence that temperature stratification lead to herbicide stratification in the water column, confirming the results of a previous study and raising important questions about exposure risk in natural systems.


Subject(s)
Anura/physiology , Glycine/analogs & derivatives , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Anura/growth & development , Ecotoxicology , Glycine/analysis , Glycine/toxicity , Herbicides/analysis , Larva/growth & development , Larva/physiology , Lethal Dose 50 , Water/analysis , Water Pollutants, Chemical/analysis , Glyphosate
12.
Environ Toxicol Chem ; 29(9): 2016-25, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20821659

ABSTRACT

The widespread use of pesticides raises the possibility that non-target organisms might also be affected. To assess this, the traditional approach has been to conduct short-term laboratory experiments spanning a range of lethal concentrations and some longer-duration experiments at sublethal concentrations. While this approach has been very useful, less attention has been paid to the timing of exposure and the impacts of multiple, small exposures versus single, large exposures. We examined the role of application amount, timing, and frequency using outdoor mesocosm communities containing larval amphibians (Rana sylvatica and Bufo americanus) and using a commercial formulation of the herbicide glyphosate (Roundup Original MAX(R)). Consistent with past studies, exposures of up to 3 mg acid equivalent (a.e.)/L caused substantial amphibian death. However, the amount of death was considerably higher when the herbicide was applied earlier in the experiment than later in the experiment. Single, large applications (at different times) had larger effects on tadpole mortality and growth than multiple, small applications (of the same total amount). The results may reflect an acclimation to the herbicide over time. In treatments with high tadpole mortality, there was no resulting increase in periphyton, suggesting that the reduction in tadpole herbivory might have been offset by direct negative impacts of the herbicide. We also discovered that temperature stratification caused herbicide stratification, with higher concentrations near the surface. Such stratification has important implications to the habitat choices of ectotherms that might prefer surface waters for thermoregulation or prefer deeper waters to avoid predators. Collectively, the present study demonstrates the importance of examining multiple applications times and frequencies to understand the impacts of pesticides on organisms.


Subject(s)
Anura/metabolism , Glycine/analogs & derivatives , Herbicides/toxicity , Animals , Dose-Response Relationship, Drug , Fresh Water/chemistry , Glycine/administration & dosage , Glycine/toxicity , Herbicides/administration & dosage , Larva/drug effects , Larva/growth & development , Larva/metabolism , Survival Analysis , Water Pollutants, Chemical/toxicity , Glyphosate
13.
Environ Toxicol Chem ; 28(9): 1939-45, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19358624

ABSTRACT

Pesticides are commonly used for health and economic benefits worldwide, but increased use has led to increased contamination of aquatic habitats. To understand potential impacts on nontarget organisms in these habitats, toxicologists generally use short-term (4-d) toxicity tests on model organisms. For most pesticides, few amphibian tests have been conducted, but there is growing concern about the potential impact of pesticides to amphibian populations. For the insecticide endosulfan, previous studies have found that low concentrations can be very highly toxic to amphibians and have suggested that this mortality may exhibit important lag effects. To estimate the lethal concentration of endosulfan that would cause 50% mortality after 4 d (LC50(4-d)) across a diversity of amphibians and the presence of lag effects, LC50(4-d) experiments were conducted on nine species of tadpoles from three families (Bufonidae: Bufo americanus, B. boreas; Hylidae: Pseudacris crucifer, P. regilla, Hyla versicolor; and Ranidae: Rana pipiens, R. clamitans, R. cascadae, R. catesbeiana) and then held the animals for an additional 4 d in clean water. The LC50(4-d) values for endosulfan ranged from 1.3 to 120 ppb, which classifies endosulfan as highly toxic to very highly toxic. Moreover, holding the animals for an additional 4 d in clean water revealed significant additional mortality in three of the nine species. Leopard frogs, for example, experienced no significant death during the initial 4-d exposure to 60 ppb but 97% death after an additional 4 d in clean water. A phylogenetic pattern also appears to exist among families, with Bufonidae being least susceptible, Hylidae being moderately susceptible, and Ranidae being most susceptible. Results from the present study provide valuable data to assess the impact of endosulfan on a globally declining group of vertebrates.


Subject(s)
Endosulfan/toxicity , Insecticides/toxicity , Larva/drug effects , Animals , Larva/classification , Lethal Dose 50
14.
Ecology ; 88(6): 1525-35, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17601144

ABSTRACT

Predator and prey spatial distributions have important population and community level consequences. However, little is known either theoretically or empirically about behavioral mechanisms that underlie the spatial patterns that emerge when predators and prey freely interact. We examined the joint space use and behavioral rules governing movement of freely interacting groups of odonate (dragonfly) predators and two size classes of anuran (tadpole) prey in arenas containing two patches with different levels of the prey's resource. Predator and prey movement and space use was quantified both when they were apart and together. When apart from predators, large tadpoles strongly preferred the high resource patch. When apart from prey, dragonflies weakly preferred the high resource patch. When together, large prey shifted to a uniform distribution, while predators strongly preferred the high resource patch. These patterns qualitatively fit the predictions of several three trophic level, ideal free distribution models. In contrast, the space use of small prey and predators did not deviate from uniform. Three measures of joint space use (spatial correlations, overlap, and co-occurrence) concurred in suggesting that prey avoidance of predators was more important than predator attraction to prey in determining overall spatial patterns. To gain additional insight into behavioral mechanisms, we used a model selection approach to identify behavioral movement rules that can potentially explain the observed, emergent patterns of space use. Prey were more likely to leave patches with more predators and more conspecific competitors; resources had relatively weak effects on prey movements. In contrast, predators were more likely to leave patches with low resources (that they do not consume) and more competing predators; prey had relatively little effect on predator movements. These results highlight the importance of investigating freely interacting predators and prey, the potential for simple game theory models to predict joint spatial distributions, and the utility of using model choice methods to identify potential key factors that govern movement.


Subject(s)
Anura/physiology , Insecta/physiology , Larva/physiology , Models, Biological , Predatory Behavior , Spatial Behavior , Animals , Anura/growth & development , Demography , Ecosystem , Environment , Food Chain , Insecta/growth & development , Larva/growth & development , Population Dynamics
15.
Environ Toxicol Chem ; 21(4): 807-15, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11951955

ABSTRACT

We exposed 10 sibships of the streamside salamander, Ambystoma barbouri, to two concentrations of triphenyltin (TPT) (1 and 5 microg/L) and an acetone carrier control for the entirety of the larval period. We measured effects on larval feeding rates, escape behavior, growth rates, and survival to, days to, and size at metamorphosis. Postmetamorphosis, we monitored feeding rates, growth rates, and survival of juvenile A. barbouri in order to investigate carryover effects. The 5-microg/L TPT concentration resulted in 93% mortality of the larvae. Exposure to 1 microg/L TPT had no mortality effect and no effect on the escape behavior of larvae. However, larvae exposed to this TPT concentration had significantly lower feeding rates and growth rates and therefore metamorphosed later than the controls but at the same mass. We detected a direct effect of TPT on growth rates beyond the effect through depressed feeding rates. We also found significant evidence for variation among sibships in their sensitivity to TPT toxicity. Once exposure was terminated at metamorphosis. we observed no residual effects of TPT on juveniles. Survival, feeding, and growth rates of juveniles exposed to TPT as larvae were not significantly different from those exposed only to the acetone carrier.


Subject(s)
Ambystoma/growth & development , Anti-Infective Agents/adverse effects , Environmental Exposure , Animals , Behavior, Animal , Dose-Response Relationship, Drug , Escape Reaction , Larva/growth & development , Metamorphosis, Biological/drug effects , Organotin Compounds/adverse effects , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...